15 research outputs found

    Coral larval recruitment in north-western Australia predicted by regional and local conditions

    Get PDF
    Understanding ecological processes that shape contemporary and future communities facilitates knowledge-based environmental management. In marine ecosystems, one of the most important processes is the supply of new recruits into a population. Here, we investigated spatiotemporal variability in coral recruitment at 15 reefs throughout the Dampier Archipelago, north-western Australia between 2015 and 2017 and identified the best environmental predictors for coral recruitment patterns over this period. Large differences in recruitment were observed among years with the average density of recruits increasing by 375% from 0.017 recruits cm−2 in 2015 to 0.059 recruits cm−2 in 2017. Despite differences in recruitment among years, the rank order of coral recruit density among reefs remained similar among years, suggesting that spatial variation in recruitment within the Dampier Archipelago is partly deterministic and predictable. The density of coral recruits was best explained by percent cover of live corals at both local (within 5 m) and meso-scales (within 15 km), water turbidity and an oceanographic model that predicted larval dispersal. The highest density of coral recruits (~0.13 recruits cm−2 or 37 recruits per tile) occurred on reefs within sub-regions (15 km) with greater than 35% coral cover, low to moderate turbidity (KD490 < 0.2) and moderate to high modelled predictions of larval dispersal. Our results demonstrate that broad-scale larval dispersal models, when combined with local metrics of percent hard coral cover and water turbidity, can reliably predict the relative abundance of coral recruits over large geographical areas and thus can identify hotspots of recruit abundance and potential recovery following environmental disturbances; information that is essential for effective management of coral reefs

    AT-rich repeats associated with chromosome 22q11.2 rearrangement disorders shape human genome architecture on Yq12

    No full text
    Low copy repeats (LCRs; segmental duplications) constitute ∼5% of the sequenced human genome. Nonallelic homologous recombination events between LCRs during meiosis can lead to chromosomal rearrangements responsible for many genomic disorders. The 22q11.2 region is susceptible to recurrent and nonrecurrent deletions, duplications as well as translocations that are mediated by LCRs termed LCR22s. One particular DNA structural element, a palindromic AT-rich repeat (PATRR) present within LCR22-3a, is responsible for translocations. Similar AT-rich repeats are present within the two largest LCR22s, LCR22-2 and LCR22-4. We provide direct sequence evidence that the AT-rich repeats have altered LCR22 organization during primate evolution. The AT-rich repeats are surrounded by a subtype of human satellite I (HSAT I), and an AluSc element, forming a 2.4-kb tripartite structure. Besides 22q11.2, FISH and PCR mapping localized the tripartite repeat within heterochromatic, unsequenced regions of the genome, including the pericentromeric regions of the acrocentric chromosomes and the heterochromatic portion of Yq12 in humans. The repeat is also present on autosomes but not on chromosome Y in other hominoid species, suggesting that it has duplicated on Yq12 after speciation of humans from its common ancestor. This demonstrates that AT-rich repeats have shaped or altered the structure of the genome during evolution

    Shuffling of Genes Within Low-Copy Repeats on 22q11 (LCR22) by Alu-Mediated Recombination Events During Evolution

    No full text
    Low-copy repeats, or segmental duplications, are highly dynamic regions in the genome. The low-copy repeats on chromosome 22q11.2 (LCR22) are a complex mosaic of genes and pseudogenes formed by duplication processes; they mediate chromosome rearrangements associated with velo-cardio-facial syndrome/DiGeorge syndrome, der(22) syndrome, and cat-eye syndrome. The ability to trace the substrates and products of recombination events provides a unique opportunity to identify the mechanisms responsible for shaping LCR22s. We examined the genomic sequence of known LCR22 genes and their duplicated derivatives. We found Alu (SINE) elements at the breakpoints in the substrates and at the junctions in the truncated products of recombination for USP18, GGT, and GGTLA, consistent with Alu-mediated unequal crossing-over events. In addition, we were able to trace a likely interchromosomal Alu-mediated fusion between IGSF3 on 1p13.1 and GGT on 22q11.2. Breakpoints occurred inside Alu elements as well as in the 5′ or 3′ ends of them. A possible stimulus for the 5′ or 3′ terminal rearrangements may be the high sequence similarities between different Alu elements, combined with a potential recombinogenic role of retrotransposon target-site duplications flanking the Alu element, containing potentially kinkable DNA sites. Such sites may represent focal points for recombination. Thus, genome shuffling by Alu-mediated rearrangements has contributed to genome architecture during primate evolution

    Indo‐Pacific origins of silky shark fins in major shark fin markets highlights supply chains and management bodies key for conservation

    No full text
    Abstract The silky shark is the second most common shark in Southeast Asia's dried fin markets and is managed in the Atlantic Ocean by the International Commission for the Conservation of Atlantic Tuna (ICCAT) and by three Indo‐Pacific regional fisheries management organizations (RMFOs). The International Commission for the Conservation of Atlantic Tuna reports ∼ 7% of global silky landings but there is a moratorium on the export of their fins. During a 4‐year period (2014–2017) we used genetic differentiation observed between Atlantic and Indo‐Pacific silky sharks to assess the contribution of Atlantic individuals to fins randomly obtained in the two largest shark fin markets in the world, Hong Kong and Guangzhou, China (N = 604). We did not detect any Atlantic fins in either market despite robust sampling effort with an estimated Indo‐Pacific contribution of 99.8% to these markets. These findings indicate that supply chains for silky shark fins in Hong Kong and Guangzhou primarily originate in the Indo‐Pacific and are mainly under the purview of three Regional Fisheries Management Organizations. Our results are consistent with the possibility that ICCAT parties have achieved high compliance with the ban on silky sharks. We suggest research and monitoring improvements that could enhance our understanding of the global trade of silky sharks and enable better fisheries management

    Microduplication and Triplication of 22q11.2: A Highly Variable Syndrome

    Get PDF
    22q11.2 microduplications of a 3-Mb region surrounded by low-copy repeats should be, theoretically, as frequent as the deletions of this region; however, few microduplications have been reported. We show that the phenotype of these patients with microduplications is extremely diverse, ranging from normal to behavioral abnormalities to multiple defects, only some of which are reminiscent of the 22q11.2 deletion syndrome. This diversity will make ascertainment difficult and will necessitate a rapid-screening method. We demonstrate the utility of four different screening methods. Although all the screening techniques give unique information, the efficiency of real-time polymerase chain reaction allowed the discovery of two 22q11.2 microduplications in a series of 275 females who tested negative for fragile X syndrome, thus widening the phenotypic diversity. Ascertainment of the fragile X–negative cohort was twice that of the cohort screened for the 22q11.2 deletion. We also report the first patient with a 22q11.2 triplication and show that this patient's mother carries a 22q11.2 microduplication. We strongly recommend that other family members of patients with 22q11.2 microduplications also be tested, since we found several phenotypically normal parents who were carriers of the chromosomal abnormality
    corecore