181 research outputs found

    Log-periodic modulation in one-dimensional random walks

    Full text link
    We have studied the diffusion of a single particle on a one-dimensional lattice. It is shown that, for a self-similar distribution of hopping rates, the time dependence of the mean-square displacement follows an anomalous power law modulated by logarithmic periodic oscillations. The origin of this modulation is traced to the dependence on the length of the diffusion coefficient. Both the random walk exponent and the period of the modulation are analytically calculated and confirmed by Monte Carlo simulations.Comment: 6 pages, 7 figure

    Erythropoietin Couples Hematopoiesis with Bone Formation

    Get PDF
    It is well established that bleeding activates the hematopoietic system to regenerate the loss of mature blood elements. We have shown that hematopoietic stem cells (HSCs) isolated from animals challenged with an acute bleed regulate osteoblast differentiation from marrow stromal cells. This suggests that HSCs participate in bone formation where the molecular basis for this activity is the production of BMP2 and BMP6 by HSCs. Yet, what stimulates HSCs to produce BMPs is unclear.In this study, we demonstrate that erythropoietin (Epo) activates Jak-Stat signaling pathways in HSCs which leads to the production of BMPs. Critically, Epo also directly activates mesenchymal cells to form osteoblasts in vitro, which in vivo leads to bone formation. Importantly, Epo first activates osteoclastogenesis which is later followed by osteoblastogenesis that is induced by either Epo directly or the expression of BMPs by HSCs to form bone.These data for the first time demonstrate that Epo regulates the formation of bone by both direct and indirect pathways, and further demonstrates the exquisite coupling between hematopoiesis and osteopoiesis in the marrow

    The role of peptides in bone healing and regeneration: A systematic review

    Get PDF
    Background: Bone tissue engineering and the research surrounding peptides has expanded significantly over the last few decades. Several peptides have been shown to support and stimulate the bone healing response and have been proposed as therapeutic vehicles for clinical use. The aim of this comprehensive review is to present the clinical and experimental studies analysing the potential role of peptides for bone healing and bone regeneration. Methods: A systematic review according to PRISMA guidelines was conducted. Articles presenting peptides capable of exerting an upregulatory effect on osteoprogenitor cells and bone healing were included in the study. Results: Based on the available literature, a significant amount of experimental in vitro and in vivo evidence exists. Several peptides were found to upregulate the bone healing response in experimental models and could act as potential candidates for future clinical applications. However, from the available peptides that reached the level of clinical trials, the presented results are limited. Conclusion: Further research is desirable to shed more light into the processes governing the osteoprogenitor cellular responses. With further advances in the field of biomimetic materials and scaffolds, new treatment modalities for bone repair will emerge

    Serotonergic chemosensory neurons modify the <i>C. elegans</i> immune response by regulating G-protein signaling in epithelial cells

    Get PDF
    The nervous and immune systems influence each other, allowing animals to rapidly protect themselves from changes in their internal and external environment. However, the complex nature of these systems in mammals makes it difficult to determine how neuronal signaling influences the immune response. Here we show that serotonin, synthesized in Caenorhabditis elegans chemosensory neurons, modulates the immune response. Serotonin released from these cells acts, directly or indirectly, to regulate G-protein signaling in epithelial cells. Signaling in these cells is required for the immune response to infection by the natural pathogen Microbacterium nematophilum. Here we show that serotonin signaling suppresses the innate immune response and limits the rate of pathogen clearance. We show that C. elegans uses classical neurotransmitters to alter the immune response. Serotonin released from sensory neurons may function to modify the immune system in response to changes in the animal's external environment such as the availability, or quality, of food

    A Critical Review on the Structural Health Monitoring Methods of the Composite Wind Turbine Blades

    Get PDF
    With increasing turbine size, monitoring of blades becomes increasingly im-portant, in order to prevent catastrophic damages and unnecessary mainte-nance, minimize the downtime and labor cost and improving the safety is-sues and reliability. The present work provides a review and classification of various structural health monitoring (SHM) methods as strain measurement utilizing optical fiber sensors and Fiber Bragg Gratings (FBG’s), active/ pas-sive acoustic emission method, vibration‒based method, thermal imaging method and ultrasonic methods, based on the recent investigations and prom-ising novel techniques. Since accuracy, comprehensiveness and cost-effectiveness are the fundamental parameters in selecting the SHM method, a systematically summarized investigation encompassing methods capabilities/ limitations and sensors types, is needed. Furthermore, the damages which are included in the present work are fiber breakage, matrix cracking, delamina-tion, fiber debonding, crack opening at leading/ trailing edge and ice accre-tion. Taking into account the types of the sensors relevant to different SHM methods, the advantages/ capabilities and disadvantages/ limitations of repre-sented methods are nominated and analyzed

    Circulating microRNAs as potential diagnostic biomarkers for osteoporosis

    Get PDF
    Osteoporosis is the most common age-related bone disease worldwide and is usually clinically asymptomatic until the first fracture happens. MicroRNAs are critical molecular regulators in bone remodelling processes and are stabilised in the blood. The aim of this project was to identify circulatory microRNAs associated with osteoporosis using advanced PCR arrays initially and the identified differentially-expressed microRNAs were validated in clinical samples using RT-qPCR. A total of 161participants were recruited and 139 participants were included in this study with local ethical approvals prior to recruitment. RNAs were extracted, purified, quantified and analysed from all serum and plasma samples. Differentially-expressed miRNAs were identified using miRNA PCR arrays initially and validated in 139 serum and 134 plasma clinical samples using RT-qPCR. Following validation of identified miRNAs in individual clinical samples using RT-qPCR, circulating miRNAs, hsa-miR-122-5p and hsa-miR-4516 were statistically significantly differentially-expressed between non-osteoporotic controls, osteopaenia and osteoporosis patients. Further analysis showed that the levels of these microRNAs were associated with fragility fracture and correlated with the low bone mineral density in osteoporosis patients. The results show that circulating hsa-miR-122-5p and hsa-miR-4516 could be potential diagnostic biomarkers for osteoporosis in the future
    corecore