1,716 research outputs found

    Controls of the surface water partial pressure of CO<sub>2</sub> in the North Sea

    Get PDF
    The seasonal variability of the partial pressure of CO2 (pCO2) has been investigated in the North Sea, a northwest European shelf sea. Based on a seasonal and high spatial resolution data set the main controlling factors - biological processes and temperature - have been identified and quantified. In the central and northern parts being a CO2- sink all year round, the biological control dominates the temperature control. In the southern part, the temperature control dominates the biological control at an annual scale, since the shallow water column prevents stronger net-CO2 removal from the surface layer due to the absence of seasonal stratification. The consequence is a reversal of the CO2 sea-to- air flux during the spring bloom period, the only time, when CO2 is taken up from the atmosphere in the southern region. Net community production in the mixed layer has been estimated to 4mol Cm−2 yr−1 with higher values (4.3 mol Cm−2 yr−1) in the northern part and lower values in the southern part (2.6 mol Cm−2 yr−1)

    Discovery Prospects for a Supernova Signature of Biogenic Origin

    Full text link
    Approximately 2.8 Myr before the present our planet was subjected to the debris of a supernova explosion. The terrestrial proxy for this event was the discovery of live atoms of 60Fe in a deep-sea ferromanganese crust. The signature for this supernova event should also reside in magnetite Fe3O4 microfossils produced by magnetotactic bacteria extant at the time of the Earth-supernova interaction, provided the bacteria preferentially uptake iron from fine-grained iron oxides and ferric hydroxides. Using estimates for the terrestrial supernova 60Fe flux, combined with our empirically derived microfossil concentrations in a deep-sea drill core, we deduce a conservative estimate of the ^{60}{Fe} fraction as 60Fe/Fe ~ 3.6 x 10^{-15}. This value sits comfortably within the sensitivity limit of present accelerator mass spectrometry capabilities. The implication is that a biogenic signature of this cosmic event is detectable in the Earth's fossil record.Comment: As it appears in Icaru

    Beneficial Effects of Resistance Exercise on Glycemic Control Are Not Further Improved by Protein Ingestion

    Get PDF
    Purpose: To investigate the mechanisms underpinning modifications in glucose homeostasis and insulin sensitivity 24 h after a bout of resistance exercise (RE) with or without protein ingestion. Methods: Twenty-four healthy males were assigned to a control (CON; n = 8), exercise (EX; n = 8) or exercise plus protein condition (EX+PRO; n = 8). Muscle biopsy and blood samples were obtained at rest for all groups and immediately post-RE (75% 1RM, 8&times;10 repetitions of leg-press and extension exercise) for EX and EX+PRO only. At 24 h post-RE (or post-resting biopsy for CON), a further muscle biopsy was obtained. Participants then consumed an oral glucose load (OGTT) containing 2 g of [U-13C] glucose during an infusion of 6, 6-[2H2] glucose. Blood samples were obtained every 10 min for 2 h to determine glucose kinetics. EX+PRO ingested an additional 25 g of intact whey protein with the OGTT. A final biopsy sample was obtained at the end of the OGTT. Results: Fasted plasma glucose and insulin were similar for all groups and were not different immediately post- and 24 h post-RE. Following RE, muscle glycogen was 26&plusmn;8 and 19&plusmn;6% lower in EX and EX+PRO, respectively. During OGTT, plasma glucose AUC was lower for EX and EX+PRO (75.1&plusmn;2.7 and 75.3&plusmn;2.8 mmol&middot;L-1:120 min, respectively) compared with CON (90.6&plusmn;4.1 mmol&middot;L-1:120 min). Plasma insulin response was 13&plusmn;2 and 21&plusmn;4% lower for EX and CON, respectively, compared with EX+PRO. Glucose disappearance from the circulation was ~12% greater in EX and EX+PRO compared with CON. Basal 24 h post-RE and insulin-stimulated PAS-AS160/TBC1D4 phosphorylation was greater for EX and EX+PRO. Conclusions: Prior RE improves glycemic control and insulin sensitivity through an increase in the rate at which glucose is disposed from the circulation. However, co-ingesting protein during a high-glucose load does not augment this response at 24 h post-exercise in healthy, insulin-sensitive individuals

    Large Polarization Degree of Comet 2P/Encke Continuum Based on Spectropolarimetric Signals During Its 2017 Apparition

    Full text link
    Spectropolarimetry is a powerful technique for investigating the physical properties of gas and solid materials in cometary comae without mutual contamination, but there have been few spectropolarimetric studies to extract each component. We attempt to derive the continuum polarization degree of comet 2P/Encke, free from influence of molecular emissions. The target is unique in that it has an orbit dynamically decoupled from Jupiter like main-belt asteroids, while ejecting gas and dust like ordinary comets. We observed the comet using the Higashi-Hiroshima Optical and Near-Infrared Camera attached to the Cassegrain focus of the 150-cm Kanata telescope on UT 2017 February 21 when the comet was at the solar phase angle of 75.7 deg. We find that the continuum polarization degree with respect to the scattering plane is 33.8+/-2.7 % at the effective wavelength of 0.815 um, which is significantly higher than those of cometary dust in a high-Pmax group at similar phase angles. Assuming that an ensemble polarimetric response of 2P/Encke's dust as a function of phase angle is morphologically similar with those of other comets, its maximum polarization degree is estimated to > 40 % at the phase angle of ~100 deg. In addition, we obtain the polarization degrees of the C2 swan bands (0.51-0.56 um), the NH2 alpha bands (0.62-0.69 um) and the CN-red system (0.78-0.94 um) in a range of 3-19 %, which depend on the molecular species and rotational quantum numbers of each branch. The polarization vector aligns nearly perpendicularly to the scattering plane with the average of 0.4 deg over a wavelength range of 0.50-0.97 um. From the observational evidence, we conjecture that the large polarization degree of 2P/Encke would be attributable to a dominance of large dust particles around the nucleus, which have remained after frequent perihelion passages near the Sun.Comment: 9 pages, 4 figures, accepted for publication in Astronomy & Astrophysic

    Distribution and redox speciation of dissolved iron on the European continental margin

    Get PDF
    To investigate the biogeochemistry of iron in the waters of the European continental margin, we determined the dissolved iron distribution and redox speciation in filtered (&lt;0.2 μm) open-ocean and shelf waters. Depth profiles were sampled over the shelf slope southeast of the Chapelle Bank area (47.61°N, 4.24°W to 46.00°N, 8.01°W) and a horizontal surface-water transect over the shelf and through the English Channel (la Manche) and the southern North Sea (46°N, 8°W to 52°N, 4°E). An abrupt trace-metal front was found near the shelf slope, indicated by a horizontal gradient of dissolved iron (DFe) and aluminium (DAl), which correlated with changing salinities (r2 = 0.572 and 0.528, respectively, n = 92). Labile Fe(II) concentrations varied from &lt;12 pmol L-1 in North Atlantic surface waters to &gt;200 pmol L-1 in the near bottom waters of the shelf break. Labile Fe(II) accounted for ∼5 of the dissolved iron species in surface shelf waters (mean 5.0 ± 2.7), whereas higher Fe(II) fractions (i.e., &gt;8) were observed near the sea bottom on the shelf break and during a midday solar maximum in surface waters in the vicinity of the Scheldt river plume. Benthic processes (resuspension and diagenesis) constituted important sources of Fe(II) and DFe in this region, and photoreduction of Fe(III) species in shelf waters caused enhanced labile Fe(II) concentrations. These processes increased the lability of iron and its potential availability to marine organisms in the shelf ecosystem. © 2007, by the American Society of Limnology and Oceanography, Inc
    corecore