20 research outputs found

    Search for medium effects using jets from bottom quarks in PbPb collisions at sNN=5.02TeV

    No full text
    The first study of the shapes of jets arising from bottom (b) quarks in heavy ion collisions is presented. Jet shapes are studied using charged hadron constituents as a function of their radial distance from the jet axis. Lead-lead (PbPb) collision data at a nucleon-nucleon center-of-mass energy of sNN=5.02TeV were recorded by the CMS detector at the LHC, with an integrated luminosity of 1.69nb−1. Compared to proton-proton collisions, a redistribution of the energy in b jets to larger distances from the jet axis is observed in PbPb collisions. This medium-induced redistribution is found to be substantially larger for b jets than for inclusive jets

    Observation of τ Lepton Pair Production in Ultraperipheral Pb-Pb Collisions at sqrt[s_{NN}]=5.02 TeV

    No full text
    : We present an observation of photon-photon production of τ lepton pairs in ultraperipheral lead-lead collisions. The measurement is based on a data sample with an integrated luminosity of 404 μb^{-1} collected by the CMS experiment at a center-of-mass energy per nucleon pair of sqrt[s_{NN}]=5.02 TeV. The γγ→τ^{+}τ^{-} process is observed for τ^{+}τ^{-} events with a muon and three charged hadrons in the final state. The measured fiducial cross section is σ(γγ→τ^{+}τ^{-})=4.8±0.6(stat)±0.5(syst) μb, where the second (third) term corresponds to the statistical (systematic) uncertainty in σ(γγ→τ^{+}τ^{-}) in agreement with leading-order QED predictions. Using σ(γγ→τ^{+}τ^{-}), we estimate a model-dependent value of the anomalous magnetic moment of the τ lepton of a_{τ}=0.001_{-0.089}^{+0.055}

    Observation of Same-Sign WW Production from Double Parton Scattering in Proton-Proton Collisions at sqrt[s]=13  TeV

    No full text
    : The first observation of the production of W^{±}W^{±} bosons from double parton scattering processes using same-sign electron-muon and dimuon events in proton-proton collisions is reported. The data sample corresponds to an integrated luminosity of 138  fb^{-1} recorded at a center-of-mass energy of 13 TeV using the CMS detector at the CERN LHC. Multivariate discriminants are used to distinguish the signal process from the main backgrounds. A binned maximum likelihood fit is performed to extract the signal cross section. The measured cross section for production of same-sign W bosons decaying leptonically is 80.7±11.2(stat) _{-8.6}^{+9.5}(syst)±12.1(model)  fb, whereas the measured fiducial cross section is 6.28±0.81(stat)±0.69(syst)±0.37(model)  fb. The observed significance of the signal is 6.2 standard deviations above the background-only hypothesis

    Measurement of the electroweak production of <math display="inline"><mi>W</mi><mi>γ</mi></math> in association with two jets in proton-proton collisions at <math display="inline"><msqrt><mi>s</mi></msqrt><mo>=</mo><mn>13</mn><mtext> </mtext><mtext> </mtext><mi>TeV</mi></math>

    No full text
    International audienceA measurement is presented for the electroweak production of a W boson, a photon (γ), and two jets (j) in proton-proton collisions. The leptonic decay of the W boson is selected by requiring one identified electron or muon and large missing transverse momentum. The two jets are required to have large invariant dijet mass and large separation in pseudorapidity. The measurement is performed with the data collected by the CMS detector at a center-of-mass energy of 13  TeV, corresponding to an integrated luminosity of 138  fb-1. The cross section for the electroweak Wγjj production is 23.5-4.7+4.9  fb, whereas the total cross section for Wγjj production is 113±13  fb. Differential cross sections are also measured with the distributions unfolded to the particle level. All results are in agreement with the standard model expectations. Constraints are placed on anomalous quartic gauge couplings (aQGCs) in terms of dimension-8 effective field theory operators. These are the most stringent limits to date on the aQGCs parameters fM,2–5/Λ4 and fT,6–7/Λ4

    Search for a heavy composite Majorana neutrino in events with dilepton signatures from proton-proton collisions at √s=13 Tev

    No full text
    Results are presented of a search for a heavy Majorana neutrino N ⠃ decaying into two same-flavor leptons ⠃ (electrons or muons) and a quark-pair jet. A model is considered in which the N ⠃ is an excited neutrino in a compositeness scenario. The analysis is performed using a sample of proton-proton collisions at &amp; RADIC;s = 13 TeV recorded by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 138 fb-1. The data are found to be in agreement with the standard model prediction. For the process in which the N ⠃ is produced in association with a lepton, followed by the decay of the N ⠃ to a same-flavor lepton and a quark pair, an upper limit at 95% confidence level on the product of the cross section and branching fraction is obtained as a function of the N ⠃ mass mN ⠃ and the compositeness scale ⠄. For this model the data exclude the existence of Ne (N &amp; mu;) for mN ⠃ below 6.0 (6.1) TeV, at the limit where mN ⠃ is equal to ⠄. For mN ⠃ N 1 TeV, values of ⠄ less than 20 (23) TeV are excluded. These results represent a considerable improvement in sensitivity, covering a larger parameter space than previous searches in pp collisions at 13 TeV.&amp; COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3

    Proton reconstruction with the CMS-TOTEM Precision Proton Spectrometer

    No full text
    The Precision Proton Spectrometer (PPS) of the CMS and TOTEM experiments collected 107.7 fb-1 in proton-proton (pp) collisions at the LHC at 13 TeV (Run 2). This paper describes the key features of the PPS alignment and optics calibrations, the proton reconstruction procedure, as well as the detector efficiency and the performance of the PPS simulation. The reconstruction and simulation are validated using a sample of (semi)exclusive dilepton events. The performance of PPS has proven the feasibility of continuously operating a near-beam proton spectrometer at a high luminosity hadron collider

    Search for Exotic Higgs Boson Decays H\ensuremath{\rightarrow}\mathcal{A}\mathcal{A}\ensuremath{\rightarrow}4\ensuremath{\gamma} with Events Containing Two Merged Diphotons in Proton-Proton Collisions at s=13  TeV\sqrt{s}=13\text{ }\text{ }\mathrm{TeV}

    No full text

    Search for Exotic Higgs Boson Decays H→AA→4γ with Events Containing Two Merged Diphotons in Proton-Proton Collisions at sqrt[s]=13  TeV

    No full text
    : We present the first direct search for exotic Higgs boson decays H→AA, A→γγ in events with two photonlike objects. The hypothetical particle A is a low-mass spin-0 particle decaying promptly to a merged diphoton reconstructed as a single photonlike object. We analyze the data collected by the CMS experiment at sqrt[s]=13  TeV corresponding to an integrated luminosity of 136  fb^{-1}. No excess above the estimated background is found. We set upper limits on the branching fraction B(H→AA→4γ) of (0.9-3.3)×10^{-3} at 95% confidence level for masses of A in the range 0.1-1.2&nbsp;GeV

    Probing Heavy Majorana Neutrinos and the Weinberg Operator through Vector Boson Fusion Processes in Proton-Proton Collisions at <math display="inline"><mrow><msqrt><mrow><mi>s</mi></mrow></msqrt><mo>=</mo><mn>13</mn><mtext> </mtext><mtext> </mtext><mi>TeV</mi></mrow></math>

    Get PDF
    International audienceThe first search exploiting the vector boson fusion process to probe heavy Majorana neutrinos and the Weinberg operator at the LHC is presented. The search is performed in the same-sign dimuon final state using a proton-proton collision dataset recorded at s=13  TeV, collected with the CMS detector and corresponding to a total integrated luminosity of 138  fb−1. The results are found to agree with the predictions of the standard model. For heavy Majorana neutrinos, constraints on the squared mixing element between the muon and the heavy neutrino are derived in the heavy neutrino mass range 50 GeV–25 TeV; for masses above 650 GeV these are the most stringent constraints from searches at the LHC to date. A first test of the Weinberg operator at colliders provides an observed upper limit at 95% confidence level on the effective μμ Majorana neutrino mass of 10.8 GeV

    Search for new physics in multijet events with at least one photon and large missing transverse momentum in proton-proton collisions at 13 TeV

    Get PDF
    A search for new physics in final states consisting of at least one photon, multiple jets, and large missing transverse momentum is presented, using proton-proton collision events at a center-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 137 fb(-1), recorded by the CMS experiment at the CERN LHC from 2016 to 2018. The events are divided into mutually exclusive bins characterized by the missing transverse momentum, the number of jets, the number of b-tagged jets, and jets consistent with the presence of hadronically decaying W, Z, or Higgs bosons. The observed data are found to be consistent with the prediction from standard model processes. The results are interpreted in the context of simplified models of pair production of supersymmetric particles via strong and electroweak interactions. Depending on the details of the signal models, gluinos and squarks of masses up to 2.35 and 1.43 TeV, respectively, and electroweakinos of masses up to 1.23 TeV are excluded at 95% confidence level
    corecore