53 research outputs found

    DNAGear: a free software for spa type identification in Staphylococcus aureus

    Get PDF
    Staphylococcus aureus is both human commensal and an important human pathogen, responsible for community-acquired and nosocomial infections ranging from superficial wound infections to invasive infections, such as osteomyelitis, bacteremia and endocarditis, pneumonia or toxin shock syndrome with a mortality rate up to 40%. S. aureus reveals a high genetic polymorphism and detecting the genotypes is extremely useful to manage and prevent possible outbreaks and to understand the route of infection. One of current and expanded typing method is based on the X region of the spa gene composed of a succession of repeats of 21 to 27 bp. More than 10000 types are known. Extracting the repeats is impossible by hand and needs a dedicated software. Unfortunately the only software on the market is a commercial program from Ridom. Findings This article presents DNAGear, a free and open source software with a user friendly interface written all in Java on top of NetBeans Platform to perform spa typing, detecting new repeats and new spa types and synchronizing automatically the files with the open access database. The installation is easy and the application is platform independent. In fact, the SPA identification is a formal regular expression matching problem and the results are 100% exact. As the program is using Java embedded modules written over string manipulation of well established algorithms, the exactitude of the solution is perfectly established. Conclusions DNAGear is able to identify the types of the S. aureus sequences and detect both new types and repeats. Comparing to manual processing, which is time consuming and error prone, this application saves a lot of time and effort and gives very reliable results. Additionally, the users do not need to prepare the forward-reverse sequences manually, or even by using additional tools. They can simply create them in DNAGear and perform the typing task. In short, researchers who do not have commercial software will benefit a lot from this application.Peer Reviewe

    “Everything You Always Wanted to Know about Sex (but Were Afraid to Ask)” in Leishmania after Two Decades of Laboratory and Field Analyses

    Get PDF
    Leishmaniases remain a major public health problem today (350 million people at risk, 12 million infected, and 2 million new infections per year). Despite the considerable progress in cellular and molecular biology and in evolutionary genetics since 1990, the debate on the population structure and reproductive mode of Leishmania is far from being settled and therefore deserves further investigation. Two major hypotheses coexist: clonality versus sexuality. However, because of the lack of clear evidence (experimental or biological confirmation) of sexuality in Leishmania parasites, until today it has been suggested and even accepted that Leishmania species were mainly clonal with infrequent genetic recombination (see [1] for review). Two recent publications, one on Leishmania major (an in vitro experimental study) and one on Leishmania braziliensis (a population genetics analysis), once again have challenged the hypothesis of clonal reproduction. Indeed, the first study experimentally evidenced genetic recombination and proposed that Leishmania parasites are capable of having a sexual cycle consistent with meiotic processes inside the insect vector. The second investigation, based on population genetics studies, showed strong homozygosities, an observation that is incompatible with a predominantly clonal mode of reproduction at an ecological time scale (∌20–500 generations). These studies highlight the need to advance the knowledge of Leishmania biology. In this paper, we first review the reasons stimulating the continued debate and then detail the next essential steps to be taken to clarify the Leishmania reproduction model. Finally, we widen the discussion to other Trypanosomatidae and show that the progress in Leishmania biology can improve our knowledge of the evolutionary genetics of American and African trypanosomes

    Leishmania isoenzyme polymorphisms in Ecuador: Relationships with geographic distribution and clinical presentation

    Get PDF
    Background: Determinants of the clinical presentation of the leishmaniases are poorly understood but Leishmania species and strain differences are important. To examine the relationship between clinical presentation, species and isoenzyme polymorphisms, 56 Leishmania isolates from distinct presentations of American tegumentary leishmaniasis (ATL) from Ecuador were analyzed. Methods: Isolates were characterized by multilocus enzyme electrophoresis for polymorphisms of 11 isoenzymes. Patients were infected in four different ecologic regions: highland and lowland jungle of the Pacific coast, Amazonian lowlands and Andean highlands. Results: Six Leishmania species constituting 21 zymodemes were identified: L. (Viannia) panamensis (21 isolates, 7 zymodemes), L. (V.) guyanensis (7 isolates, 4 zymodemes), L. (V.) braziliensis (5 isolates, 3 zymodemes), L. (Leishmania) mexicana (11 isolates, 4 zymodemes), L. (L.) amazonensis (10 isolates, 2 zymodemes) and L. (L.) major (2 isolates, 1 zymodeme). L. panamensis was the species most frequently identified in the Pacific region and was associated with several clinical variants of cutaneous disease (CL); eight cases of leishmaniasis recidiva cutis (LRC) found in the Pacific highlands were associated with 3 zymodemes of this species. Mucocutaneous leishmaniasis found only in the Amazonian focus was associated with 3 zymodemes of L. braziliensis. The papular variant of CL, Uta, found in the Andean highlands was related predominantly with a single zymodeme of L. mexicana. Conclusion: Our data show a high degree of phenotypic variation within species, and some evidence for associations between specific variants of ATL (i.e. Uta and LRC) and specific Leishmania zymodemes. This study further defines the geographic distribution of Leishmania species and clinical variants of ATL in Ecuador

    Study of Leishmania pathogenesis in mice : experimental considerations

    Get PDF
    Although leishmaniases are endemic in 98 countries, they are still considered neglected tropical diseases. Leishmaniases are characterized by the emergence of new virulent and asymptomatic strains of Leishmania spp. and, as a consequence, by a very diverse clinical spectrum. To fight more efficiently these parasites, the mechanisms of host defense and of parasite virulence need to be thoroughly investigated. To this aim, animal models are widely used. However, the results obtained with these models are influenced by several experimental parameters, such as the mouse genetic background, parasite genotype, inoculation route/infection site, parasite dose and phlebotome saliva. In this review, we propose an update on their influence in the two main clinical forms of the disease: cutaneous and visceral leishmaniases

    Detection and Identification of Old World Leishmania by High Resolution Melt Analysis

    Get PDF
    Protozoal parasites of the genus Leishmania are transmitted by sand fly bites to humans and animals. Three major forms of disease are caused by these parasites: cutaneous leishmaniasis, responsible for disfiguring skin wounds; mucocutaneous leishmaniasis, causing non-healing ulceration around the mouth and nose; and the potentially fatal visceral leishmaniasis, involving internal organs such as the spleen and liver. More than 2 million new human infections are caused annually by leishmaniasis globally, it is endemic in more than 88 countries and prevalent also as an imported disease in non-endemic regions due to travel and tourism. Most species of Leishmania that infect humans are zoonotic and transmitted from animal reservoir hosts. As various leishmanial parasites cause disease with similar symptoms, but require different therapeutic regimens and have dissimilar prognoses, reliable, sensitive and rapid diagnostic assays are needed. This study focuses on the five main species that cause leishmaniasis in the Old World. It presents a new assay for rapid detection, species identification and quantification of leishmanial parasites in clinical samples, reservoir hosts and sand flies. This technique could be especially valuable in regions where several leishmanial species exist, in non-endemic regions where infected patients require a rapid diagnosis, and for epidemiological host and vector studies leading to prevention programs

    Long or complicated mpox in patients with uncontrolled HIV infection

    Get PDF
    To date, former research about the impact of HIV infection on mpox poor outcomes is still limited and controversial. Therefore, the aim of this study was to assess the impact of HIV on the clinical course of mpox, in a large population of patients from Spain. Nationwide case-series study. Patients from 18 Spanish hospitals, with PCR-confirmed mpox from April 27, 2022 to June 30, 2023 were included in this study. The main outcome was the development of long or complicated (LC) mpox, defined as: (i) duration of the clinical course ≄ 28 days, or; (ii) disseminated disease, or: (iii) emergence of severe complications. One thousand eight hundred twenty-three individuals were included. Seven hundred eighty-six (43%) were people living with HIV (PLWH), of whom 11 (1%) had a CD4 cell count < 200 cells/mm3 and 33 (3%) <350 cells/mm3 . HIV viral load ≄ 1000 cp/mL was found in 27 (3%) PLWH, none of them were on effective ART. Fifteen (60%) PLWH with HIV-RNA ≄ 1000 cp/mL showed LC versus 182 (29%) PLWH with plasma HIV-RNA load < 1000 copies/mL and 192 (24%) individuals without HIV infection (p < 0.001). In multivariate analysis, adjusted by age, sex, CD4 cell counts and HIV viral load at the time of mpox, only plasma HIV-RNA ≄ 1000 cp/mL was associated with a greater risk of developing LC mpox [adjusted OR = 4.06 (95% confidence interval 1.57-10.51), p = 0.004]. PLWH with uncontrolled HIV infection, due to lack of ART, are at a greater risk of developing LC mpox. Efforts should be made to ensure HIV testing is carried out in patients with mpox and to start ART without delay in those tested positive

    Multifaceted Population Structure and Reproductive Strategy in Leishmania donovani Complex in One Sudanese Village

    Get PDF
    Leishmania species of the subgenus Leishmania and especially L. donovani are responsible for a large proportion of visceral leishmaniasis cases. The debate on the mode of reproduction and population structure of Leishmania parasites remains opened. It has been suggested that Leishmania parasites could alternate different modes of reproduction, more particularly clonality and frequent recombinations either between related individuals (endogamy) or between unrelated individuals (outcrossing) within strongly isolated subpopulations. To determine whether this assumption is generalized to other species, a population genetics analysis within Leishmania donovani complex strains was conducted within a single village. The results suggest that a mixed-mating reproduction system exists, an important heterogeneity of subsamples and the coexistence of several genetic entities in Sudanese L. donovani. Indeed, results showed significant genetic differentiation between the three taxa (L. donovani, L. infantum and L. archibaldi) and between the human or canine strains of such taxa, suggesting that there may be different imbricated transmission cycles involving either dogs or humans. Results also are in agreement with an almost strict specificity of L. donovani stricto sensu to human hosts. This empirical study demonstrates the complexity of population structure in the genus Leishmania and the need to pursue such kind of analyses at the smallest possible spatio-temporal and ecological scales

    A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies

    Get PDF
    Background The aim of this study is to describe the major evolutionary historical events among Leishmania, sandflies, and the associated animal reservoirs in detail, in accordance with the geographical evolution of the Earth, which has not been previously discussed on a large scale. Methodology and Principal Findings Leishmania and sandfly classification has always been a controversial matter, and the increasing number of species currently described further complicates this issue. Despite several hypotheses on the origin, evolution, and distribution of Leishmania and sandflies in the Old and New World, no consistent agreement exists regarding dissemination of the actors that play roles in leishmaniasis. For this purpose, we present here three centuries of research on sandflies and Leishmania descriptions, as well as a complete description of Leishmania and sandfly fossils and the emergence date of each Leishmania and sandfly group during different geographical periods, from 550 million years ago until now. We discuss critically the different approaches that were used for Leishmana and sandfly classification and their synonymies, proposing an updated classification for each species of Leishmania and sandfly. We update information on the current distribution and dispersion of different species of Leishmania (53), sandflies (more than 800 at genus or subgenus level), and animal reservoirs in each of the following geographical ecozones: Palearctic, Nearctic, Neotropic, Afrotropical, Oriental, Malagasy, and Australian. We propose an updated list of the potential and proven sandfly vectors for each Leishmania species in the Old and New World. Finally, we address a classical question about digenetic Leishmania evolution: which was the first host, a vertebrate or an invertebrate? Conclusions and Significance We propose an updated view of events that have played important roles in the geographical dispersion of sandflies, in relation to both the Leishmania species they transmit and the animal reservoirs of the parasites
    • 

    corecore