10,632 research outputs found

    Singlet oxygen generator for a solar powered chemically pumped iodine laser

    Get PDF
    The potential of solid phase endoperoxides as a means to produce single-delta oxygen in the gas phase in concentrations useful to chemical oxygen-iodine lasers was investigated. The 1,4 - endoperoxide of ethyl 3- (4-methyl - 1-naphthyl) propanoate was deposited over an indium-oxide layer on a glass plate. Single-delta oxygen was released from the endoperoxide upon heating the organic film by means of an electrical discharge through the conductive indium oxide coating. The evolution of singlet-delta oxygen was determined by measuring the dimol emission signal at 634 nm. Comparison of the measured signal with an analytic model leads to two main conclusions: virtually all the oxygen being evolved is in the singlet-delta state and in the gas phase, and there is no significant quenching other than energy pooling on the time scale of the experiment (approximately 10 msec). The use of solid phase endoperoxide as a singlet-delta oxygen generator for an oxygen-iodine laser appears promising

    Non-disturbing quantum measurements

    Full text link
    We consider pairs of quantum observables (POVMs) and analyze the relation between the notions of non-disturbance, joint measurability and commutativity. We specify conditions under which these properties coincide or differ---depending for instance on the interplay between the number of outcomes and the Hilbert space dimension or on algebraic properties of the effect operators. We also show that (non-)disturbance is in general not a symmetric relation and that it can be decided and quantified by means of a semidefinite program.Comment: Minor corrections in v

    Characterization of the Sequential Product on Quantum Effects

    Full text link
    We present a characterization of the standard sequential product of quantum effects. The characterization is in term of algebraic, continuity and duality conditions that can be physically motivated.Comment: 11 pages. Accepted for publication in the Journal of Mathematical Physic

    The structure of classical extensions of quantum probability theory

    Get PDF
    On the basis of a suggestive definition of a classical extension of quantum mechanics in terms of statistical models, we prove that every such classical extension is essentially given by the so-called Misra–Bugajski reduction map. We consider how this map enables one to understand quantum mechanics as a reduced classical statistical theory on the projective Hilbert space as phase space and discuss features of the induced hidden-variable model. Moreover, some relevant technical results on the topology and Borel structure of the projective Hilbert space are reviewed

    Approximating incompatible von Neumann measurements simultaneously

    Get PDF
    We study the problem of performing orthogonal qubit measurements simultaneously. Since these measurements are incompatible, one has to accept additional imprecision. An optimal joint measurement is the one with the least possible imprecision. All earlier considerations of this problem have concerned only joint measurability of observables, while in this work we also take into account conditional state transformations (i.e., instruments). We characterize the optimal joint instrument for two orthogonal von Neumann instruments as being the Luders instrument of the optimal joint observable.Comment: 9 pages, 4 figures; v2 has a more extensive introduction + other minor correction

    The Standard Model of Quantum Measurement Theory: History and Applications

    Get PDF
    The standard model of the quantum theory of measurement is based on an interaction Hamiltonian in which the observable-to-be-measured is multiplied with some observable of a probe system. This simple Ansatz has proved extremely fruitful in the development of the foundations of quantum mechanics. While the ensuing type of models has often been argued to be rather artificial, recent advances in quantum optics have demonstrated their prinicpal and practical feasibility. A brief historical review of the standard model together with an outline of its virtues and limitations are presented as an illustration of the mutual inspiration that has always taken place between foundational and experimental research in quantum physics.Comment: 22 pages, to appear in Found. Phys. 199

    Freedom in the sense of the Heidelberg Catechism – an orientation in the problems of modern liberty

    Get PDF
    The Heidelberg Catechism courageously mentions that Christians participate in the work of Christ as the eternal king. This means that, during their life on earth, Christians fight against sin “with a free conscience”. These words anticipate the call for human rights in the French Revolution. Although the Catechism uses the word “free” only at this point, the text shows the context in which we have to understand “freedom”. It instructs us that we have to understand the word not as a freedom “from” and, therefore, not as freedom only for myself, but as freedom “for” a life with others. The reason for this is that real freedom is founded in the gift of the divine liberator, who loves us only along with our neighbours. We are free in relation to God and our fellow human beings

    Property investigation and sputter deposition of dispersion-hardened copper for fatigue specimen fabrication

    Get PDF
    Sputter-deposited alloys of dispersion-hardenable Cu-0.25 vol% SiC and Cu-0.50 vol% SiC and precipitation-hardenable Cu-0.15 wt% Zr and Cu-0.05 wt% Mg-0.15 wt% Zr-0.40 wt% Cr were investigated for selection to evaluate fatigue specimen performance with potential application in fabricating regeneratively cooled rocket thrust chambers. Yield strengths in the 700 to 1000-MN/sq m range were observed with uniform elongation ranging from 0.5 to 1.5% and necking indicative of greater ductility. Electrical conductivity measured as an analog to thermal conductivity gave values 90% IACS for Cu-0.15 wt% Zr and Cu-0.05 wt% Mg-0.15 wt% Zr-0.40 wt% Cr. A 5500-g sputtered deposit of Cu-0.15 wt% Zr alloy, 12.29 mm (0.484 in.) average thickness in the fatigue specimen gage length, was provided to NASA on one of their substrates

    Fabrication of thick structures by sputtering

    Get PDF
    Deposit, 5500-gram of Cu-0.15 wt % Zr alloy, sputtered onto copper cylinder to average thickness of 12.29 mm. Structure was achieved with high-rate sputter deposition for about 100 hours total sputtering time. Material had twice the strength of unsputtered material at temperatures to 723 K and equivalent strength at nearly 873 K
    • …
    corecore