research
Property investigation and sputter deposition of dispersion-hardened copper for fatigue specimen fabrication
- Publication date
- Publisher
Abstract
Sputter-deposited alloys of dispersion-hardenable Cu-0.25 vol% SiC and Cu-0.50 vol% SiC and precipitation-hardenable Cu-0.15 wt% Zr and Cu-0.05 wt% Mg-0.15 wt% Zr-0.40 wt% Cr were investigated for selection to evaluate fatigue specimen performance with potential application in fabricating regeneratively cooled rocket thrust chambers. Yield strengths in the 700 to 1000-MN/sq m range were observed with uniform elongation ranging from 0.5 to 1.5% and necking indicative of greater ductility. Electrical conductivity measured as an analog to thermal conductivity gave values 90% IACS for Cu-0.15 wt% Zr and Cu-0.05 wt% Mg-0.15 wt% Zr-0.40 wt% Cr. A 5500-g sputtered deposit of Cu-0.15 wt% Zr alloy, 12.29 mm (0.484 in.) average thickness in the fatigue specimen gage length, was provided to NASA on one of their substrates