1,440 research outputs found

    Evolution of the Near-Infrared Tully-Fisher Relation: Constraints on the Relationship Between the Stellar and Total Masses of Disk Galaxies since z=1

    Full text link
    Using a combination of Keck spectroscopy and near-infrared imaging, we investigate the K-band and stellar mass Tully-Fisher relation for 101 disk galaxies at 0.2 < z < 1.2, with the goal of placing the first observational constraints on the assembly history of halo and stellar mass. Our main result is a lack of evolution in either the K-band or stellar mass Tully-Fisher relation from z = 0 - 1.2. Furthermore, although our sample is not statistically complete, we consider it suitable for an initial investigation of how the fraction of total mass that has condensed into stars is distributed with both redshift and total halo mass. We calculate stellar masses from optical and near-infrared photometry and total masses from maximum rotational velocities and disk scale lengths, utilizing a range of model relationships derived analytically and from simulations. We find that the stellar/total mass distribution and stellar-mass Tully-Fisher relation for z > 0.7 disks is similar to that at lower redshift, suggesting that baryonic mass is accreted by disks along with dark matter at z < 1, and that disk galaxy formation at z < 1 is hierarchical in nature. We briefly discuss the evolutionary trends expected in conventional structure formation models and the implications of extending such a study to much larger samples.Comment: ApJ, in press, 9 page

    Deductive synthesis of recursive plans in linear logic

    Get PDF
    Linear logic has previously been shown to be suitable for describing and deductively solving planning problems involving conjunction and disjunction. We introduce a recursively defined datatype and a corresponding induction rule, thereby allowing recursive plans to be synthesised. In order to make explicit the relationship between proofs and plans, we enhance the linear logic deduction rules to handle plans as a form of proof term

    The Bimodal Galaxy Stellar Mass Function in the COSMOS Survey to z~1: A Steep Faint End and a New Galaxy Dichotomy

    Get PDF
    We present a new analysis of stellar mass functions (MF) in the COSMOS field to fainter limits than has been previously probed to z~1. Neither the total nor the passive or star-forming MF can be well fit with a single Schechter function once one probes below 3e9 Msun. We observe a dip or plateau at masses ~1e10 Msun, and an upturn towards a steep faint-end slope of -1.7 at lower mass at any z<1. This bimodal nature of the MF is not solely a result of the blue/red dichotomy. The blue MF is by itself bimodal at z~1. This suggests a new dichotomy in galaxy formation that predates the appearance of the red sequence. We propose two interpretations for this bimodality. If the gas fraction increases towards lower mass, galaxies with M_baryon~1e10 Msun would shift to lower stellar masses, creating the observed dip. This would indicate a change in star formation efficiency, perhaps linked to supernovae feedback becoming much more efficient. Therefore, we investigate whether the dip is present in the baryonic (stars+gas) MF. Alternatively, the dip could be created by an enhancement of the galaxy assembly rate at ~1e11 Msun, a phenomenon that naturally arises if the baryon fraction peaks at M_halo ~1e12 Msun. In this scenario, galaxies occupying the bump around M* would be identified with central galaxies and the second fainter component having a steep faint-end slope with satellites. While the dip is apparent in the total MF at any z, it appears to shift from the blue to red population, likely as a result of transforming high-mass blue galaxies into red ones. At the same time, we detect a drastic upturn in the number of low-mass red galaxies. Their increase with time reflects a decrease in the number of blue systems and so we tentatively associate them with satellite dwarf galaxies that have undergone quenching.Comment: 16 pages, 10 figures, accepted for publication in Ap

    A Catalog of 71 Coronal Line Galaxies in MaNGA: [NeV] is an Effective AGN Tracer

    Full text link
    Despite the importance of AGN in galaxy evolution, accurate AGN identification is often challenging, as common AGN diagnostics can be confused by contributions from star formation and other effects (e.g., Baldwin-Phillips-Terlevich diagrams). However, one promising avenue for identifying AGNs are ``coronal emission lines" (``CLs"), which are highly ionized species of gas with ionization potentials ≄\ge 100 eV. These CLs may serve as excellent signatures for the strong ionizing continuum of AGN. To determine if CLs are in fact strong AGN tracers, we assemble and analyze the largest catalog of optical CL galaxies using the Sloan Digital Sky Survey's Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) catalog. We detect CL emission in 71 MaNGA galaxies, out of the 10,010 unique galaxies from the final MaNGA catalog, with ≄\ge 5σ\sigma confidence. In our sample, we measure [NeV]λ\lambda3347, λ\lambda3427, [FeVII]λ\lambda3586, λ\lambda3760, λ\lambda6086, and [FeX]λ\lambda6374 emission and crossmatch the CL galaxies with a catalog of AGNs that were confirmed with broad line, X-ray, IR, and radio observations. We find that [NeV] emission, compared to [FeVII] and [FeX] emission, is best at identifying high luminosity AGN. Moreover, we find that the CL galaxies with the least dust extinction yield the most iron CL detections. We posit that the bulk of the iron CLs are destroyed by dust grains in the galaxies with the highest [OIII] luminosities in our sample, and that AGN in the galaxies with low [OIII] luminosities are possibly too weak to be detected using traditional techniques.Comment: 21 pages, 6 figures, 8 table

    Graphical Reasoning in Compact Closed Categories for Quantum Computation

    Full text link
    Compact closed categories provide a foundational formalism for a variety of important domains, including quantum computation. These categories have a natural visualisation as a form of graphs. We present a formalism for equational reasoning about such graphs and develop this into a generic proof system with a fixed logical kernel for equational reasoning about compact closed categories. Automating this reasoning process is motivated by the slow and error prone nature of manual graph manipulation. A salient feature of our system is that it provides a formal and declarative account of derived results that can include `ellipses'-style notation. We illustrate the framework by instantiating it for a graphical language of quantum computation and show how this can be used to perform symbolic computation.Comment: 21 pages, 9 figures. This is the journal version of the paper published at AIS

    A Compact Early-type Galaxy at z = 0.6 Under a Magnifying Lens: Evidence For Inside-out Growth

    Full text link
    We use Keck laser guide star adaptive optics imaging and exploit the magnifying effects of strong gravitational lensing (the effective resolution is FWHM ~ 200 pc) to investigate the sub-kpc scale of an intermediate-redshift (z = 0.63) massive early-type galaxy being lensed by a foreground early-type galaxy; we dub this class of strong gravitational lens systems EELs, e.g., early-type/early-type lenses. We find that the background source is massive (M* = 10^{10.9} M_sun) and compact (r_e = 1.1 kpc), and a two-component fit is required to model accurately the surface brightness distribution, including an extended low-surface-brightness component. This extended component may arise from the evolution of higher-redshift `red nuggets' or may already be in place at z ~ 2 but is unobservable due to cosmological surface brightness dimming.Comment: 5 pages, 4 figures; accepted to MNRA

    The Build-Up of the Hubble Sequence in the COSMOS Field

    Get PDF
    We use ~8,600 >5e10 Msol COSMOS galaxies to study how the morphological mix of massive ellipticals, bulge-dominated disks, intermediate-bulge disks, bulge-less disks and irregular galaxies evolves from z=0.2 to z=1. The morphological evolution depends strongly on mass. At M>3e11 Msol, no evolution is detected in the morphological mix: ellipticals dominate since z=1, and the Hubble sequence has quantitatively settled down by this epoch. At the 1e11 Msol mass scale, little evolution is detected, which can be entirely explained with major mergers. Most of the morphological evolution from z=1 to z=0.2 takes place at masses 5e10 - 1e11 Msol, where: (i) The fraction of spirals substantially drops and the contribution of early-types increases. This increase is mostly produced by the growth of bulge-dominated disks, which vary their contribution from ~10% at z=1 to >30% at z=0.2 (cf. the elliptical fraction grows from ~15% to ~20%). Thus, at these masses, transformations from late- to early-types result in disk-less elliptical morphologies with a statistical frequency of only 30% - 40%. Otherwise, the processes which are responsible for the transformations either retain or produce a non-negligible disk component. (ii) The bulge-less disk galaxies, which contribute ~15% to the intermediate-mass galaxy population at z=1, virtually disappear by z=0.2. The merger rate since z=1 is too low to account for the disappearance of these massive bulge-less disks, which most likely grow a bulge via secular evolution.Comment: 5 pages, 3 figures, submitted to ApJ

    Unpacking the ‘Emergent Farmer’ Concept in Agrarian Reform:Evidence from Livestock Farmers in South Africa

    Get PDF
    South Africa has historically perpetuated a dual system of freehold commercial and communal subsistence farming. To bridge these extremes, agrarian reform policies have encouraged the creation of a class of ‘emergent’, commercially oriented farmers. However, these policies consider ‘emergent’ farmers as a homogeneous group of land reform beneficiaries, with limited appreciation of the class differences between them, and do little to support the rise of a ‘middle’ group of producers able to bridge that gap. This article uses a case study of livestock farmers in Eastern Cape Province to critique the ‘emergent farmer’ concept. The authors identify three broad categories of farmers within the emergent livestock sector: a large group who, despite having accessed private farms, remain effectively subsistence farmers; a smaller group of small/medium-scale commercial producers who have communal farming origins and most closely approximate to ‘emergent’ farmers; and an elite group of large-scale, fully commercialized farmers, whose emergence has been facilitated primarily by access to capital and a desire to invest in alternative business ventures. On this basis the authors suggest that current agrarian reform policies need considerable refocusing if they are to effectively facilitate the emergence of a ‘middle’ group of smallholder commercial farmers from communal systems

    Electronic Transport in a Three-dimensional Network of 1-D Bismuth Quantum Wires

    Full text link
    The resistance R of a high density network of 6 nm diameter Bi wires in porous Vycor glass is studied in order to observe its expected semiconductor behavior. R increases from 300 K down to 0.3 K. Below 4 K, where R varies approximately as ln(1/T), the order-of-magnitude of the resistance rise, as well as the behavior of the magnetoresistance are consistent with localization and electron-electron interaction theories of a one-dimensional disordered conductor in the presence of strong spin-orbit scattering. We show that this behaviour and the surface-enhanced carrier density may mask the proposed semimetal-to-semiconductor transition for quantum Bi wires.Comment: 19 pages total, 4 figures; accepted for publication in Phys. Rev.
    • 

    corecore