5,424 research outputs found

    Release and Formation of Oxidation-Related Aldehydes during Wine Oxidation

    Get PDF
    Twenty-four Spanish wines were subjected to five consecutive cycles of air saturation at 25 °C. Free and bound forms of carbonyls were measured in the initial samples and after each saturation. Nonoxidized commercial wines contain important and sensory relevant amounts of oxidation-related carbonyls under the form of odorless bound forms. Models relating the contents in total aldehydes to the wine chemical composition suggest that fermentation can be a major origin for Strecker aldehydes: methional, phenylacetaldehyde, isobutyraldehyde, 2-methylbutanal, and isovaleraldehyde. Bound forms are further cleaved, releasing free aldehydes during the first steps of wine oxidation, as a consequence of equilibrium shifts caused by the depletion of SO2. At low levels of free SO2, de novo formation and aldehyde degradation are both observed. The relative importance of these phenomena depends on both the aldehyde and the wine. Models relating aldehyde formation rates to wine chemical composition suggest that amino acids are in most cases the most important precursors for de novo formation

    Matter profile effect in neutrino factory

    Get PDF
    We point out that the matter profile effect --- the effect of matter density fluctuation on the baseline --- is very important to estimate the parameters in a neutrino factory with a very long baseline. To make it clear, we propose the method of the Fourier series expansion of the matter profile. By using this method, we can take account of both the matter profile effect and its ambiguity. For very long baseline experiment, such as L=7332km, in the analysis of the oscillation phenomena we need to introduce a new parameter a1 a_{1} --- the Fourier coefficient of the matter profile --- as a theoretical parameter to deal with the matter profile effects.Comment: 21 pages, 15 figure

    Oxygen and SO2 Consumption Rates in White and Rosé Wines: Relationship with and Effects on Wine Chemical Composition

    Get PDF
    This Article addresses the study of O2 and SO2 consumption rates of white and rosé wines, their relationship to the initial chemical composition, and their effects on the chemical changes experienced by wine during oxidation. Eight wines were subjected to five consecutive air-saturation cycles. O2 was monitored periodically; SO2, color, and antioxidant indexes were determined after each cycle, and the initial and final compositions of the wines were thoroughly determined. Wines consumed oxygen at progressively decreasing rates. In the last cycles, after a strong decrease, consistent increases of oxygen levels were seen. Oxygen consumption rates were satisfactorily modeled, being proportional to wine copper, quercetin, and kaempherol contents and negatively proportional to cinnamic acids. SO2 consumption rates were highly diverse between wines and were positively related to free SO2, Mn, and pH, among others. In the last saturations, SO2 consumption took place regardless of O2 consumption, implying that SO2 should reduce chemical species oxidized in previous saturations. Some volatile phenols seem to be the end point of radical-mediated oxidation of polyphenols taking place preferably in the first saturation

    Technical criteria for the desing of foundation slabs and perimetral wall in difficult terrain in Madrid. Spain

    Get PDF
    This paper explains a procedure for the choice of ballast modules used for the design of direct continuous foundation in karst terrain. The presence of dangerous cavities is introduced in this procedure thereby evaluating risk failure. It also provides pertinent guidelines to direct the geotechnical survey of the terrain

    A Substantial Amount of Hidden Magnetic Energy in the Quiet Sun

    Full text link
    Deciphering and understanding the small-scale magnetic activity of the quiet solar photosphere should help to solve many of the key problems of solar and stellar physics, such as the magnetic coupling to the outer atmosphere and the coronal heating. At present, we can see only 1{\sim}1% of the complex magnetism of the quiet Sun, which highlights the need to develop a reliable way to investigate the remaining 99%. Here we report three-dimensional radiative tranfer modelling of scattering polarization in atomic and molecular lines that indicates the presence of hidden, mixed-polarity fields on subresolution scales. Combining this modelling with recent observational data we find a ubiquitous tangled magnetic field with an average strength of 130{\sim}130 G, which is much stronger in the intergranular regions of solar surface convection than in the granular regions. So the average magnetic energy density in the quiet solar photosphere is at least two orders of magnitude greater than that derived from simplistic one-dimensional investigations, and sufficient to balance radiative energy losses from the solar chromosphere.Comment: 21 pages and 2 figures (letter published in Nature on July 15, 2004

    Uso de ferramentas de geotecnologias para a simulação do manejo da água em terras baixas.

    Get PDF
    Dissertação (Mestrado em Recursos Hídricos) - Programa de Pós-Graduação em Recursos Hídricos, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, 2018. Orientador: Lessandro Col Faria, Coorientador: Jose Maria Barbat Parffit

    A near-IR line of Mn I as a diagnostic tool of the average magnetic energy in the solar photosphere

    Get PDF
    We report on spectropolarimetric observations of a near-IR line of Mn I located at 15262.702 A whose intensity and polarization profiles are very sensitive to the presence of hyperfine structure. A theoretical investigation of the magnetic sensitivity of this line to the magnetic field uncovers several interesting properties. The most important one is that the presence of strong Paschen-Back perturbations due to the hyperfine structure produces an intensity line profile whose shape changes according to the absolute value of the magnetic field strength. A line ratio technique is developed from the intrinsic variations of the line profile. This line ratio technique is applied to spectropolarimetric observations of the quiet solar photosphere in order to explore the probability distribution function of the magnetic field strength. Particular attention is given to the quietest area of the observed field of view, which was encircled by an enhanced network region. A detailed theoretical investigation shows that the inferred distribution yields information on the average magnetic field strength and the spatial scale at which the magnetic field is organized. A first estimation gives ~250 G for the mean field strength and a tentative value of ~0.45" for the spatial scale at which the observed magnetic field is horizontally organized.Comment: 42 pages, 17 figures, accepted for publication in the Astrophysical Journal. Figures 1 and 9 are in JPG forma
    corecore