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Abstract 1 

This paper addresses the study of O2 and SO2 consumption rates of white and rosé 2 

wines, their relationship to the initial chemical composition and their effects on the 3 

chemical changes experienced by wine during oxidation. Eight wines were subjected to 4 

five consecutive air-saturation cycles. O2 was monitored periodically; SO2, color and 5 

antioxidant indexes were determined after each cycle, and the initial and final 6 

composition of the wines were thoroughly determined. Wines consumed oxygen at 7 

progressively decreasing rates. In the last cycles, after a strong decrease, consistent 8 

increases of oxygen levels were seen. Oxygen consumption rates were satisfactorily 9 

modelled, being proportional to wine Copper, quercetin and kaempherol contents, and 10 

negatively proportional to cinnamic acids. SO2 consumption rates were highly diverse 11 

between wines and were positively related to free SO2, Mn and pH, among others. In 12 

the last saturations, SO2 consumption took place regardless O2 consumption, implying 13 

that SO2 should reduce chemical species oxidized in previous saturations. Some volatile 14 

phenols seem to be the endpoint of radical-mediated oxidation of polyphenols taking 15 

place preferably in the first saturation. 16 

Key words: acetaldehyde, copper, oxidation mechanisms, flavonols, flavanols 17 
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Introduction 18 

Oxygen management is crucial in winemaking, since it can cause significant 19 

improvements or irreversible defects. Oxidation and reduction reactions occur in 20 

several moments during the wine-making process causing important changes in color, 21 

aroma and taste.1 In white and rosé wines, it is not usual to oxidize on purpose, except 22 

for some specific styles of wines, so that if these wines are accidentally exposed to air, 23 

their quality will be damaged.2 Because of a number of reasons, such as the smaller 24 

levels of polyphenols, and the oxygen-sensitive nature of the varietal aroma of many 25 

white and rosé wines,3 the wine resistance to oxidation and the use of sulfur dioxide 26 

(SO2) and other antioxidants remain an important issue.  27 

Oxidation mechanisms in wine have been recently reviewed 4-12 and it is now accepted 28 

that SO2 does not directly reacts to O2. When oxygen is dissolved in wine, a cascade of 29 

oxidative reactions catalyzed by metals such as copper and iron, oxidizes phenolic 30 

compounds.2, 5, 6, 13 During this process, highly reactive species such as quinones and 31 

hydrogen peroxide are formed, being SO2 a key component reacting to both 32 

intermediates. The first step of the oxidation mechanism is proposed to be the 33 

activation of dissolved oxygen by catalytic action of metal ions, principally Fe (II), but in 34 

which Cu (II) exerts a demonstrated enhancing effect. As a result, the hydroperoxyl 35 

radical (HO2
•) is thought to be formed. Following, this radical is supposed to react with 36 

the catechol moiety of phenols, leading first to the formation of semiquinones and 37 

finally of quinones, leaving hydrogen peroxide (H2O2) as the main by-product. If SO2 is 38 

present, it reacts with H2O2, reducing it to water (H2O) and oxidizing itself to sulfate 39 

(SO4
2-). Besides, SO2 can react to quinones, either to reduce them back to catechols or 40 

by a nucleophilic reaction to produce catechol sulfonate.3 If SO2 is not available, H2O2 41 
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triggers Fenton reaction, where Fe (II) transform H2O2 in the hydroxyl radical (HO•), 42 

one of the most reactive oxygen radicals, which is able to abstract hydrogen atoms 43 

from organic compounds to become H2O. This radical HO• is the main responsible for 44 

the oxidation of ethanol to acetaldehyde which if accumulates, will impart to wine a 45 

characteristic oxidative odor. The consequences of these reactions are important 46 

modifications in wine composition affecting to phenolic and aromatic composition.4-12  47 

The key role played by SO2 explains why this compound is the most important 48 

exogenous wine antioxidant. However, some allergic symptoms in humans have been 49 

associated to SO2, which has triggered a general tendency to reduce the amounts of 50 

this antioxidant and eventually to replace it by a different one with the same efficiency 51 

and less toxicity. 14-16 This has not happened at present 17 and it can be hypothesized 52 

that reducing SO2 levels while keeping or improving wine resistance to oxidation is a 53 

long term goal will require a deep understanding about the different processes directly 54 

or indirectly linked to the consumption of O2 by wine.  55 

In this regard, the main goals of the present work are to identify the chemical 56 

components with major effect on the rates at which white and rosé wines consume O2 57 

and SO2, to describe the chemical changes associated to the consumption of oxygen 58 

and to assess how these changes are related to the protection levels of SO2. 59 

Materials and Methods 60 

Wines and Samples 61 

Five white wines and three rosé wines were purchased at a local wine store. Wines 62 

were from different Spanish Denominations of Origin, two of them were from Rueda, 63 

and one sample each from Navarra, Rias Baixas, Rioja, Cariñena, Calatayud and 64 
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Somontano. The detailed list of samples, including sample information is shown in 65 

Table 1.  66 

Wine oxidation was performed in a five-cycle forced oxidation experiment. Wines were 67 

extensively analyzed at the beginning and after the five cycles. In addition, after each 68 

cycle a more limited set of analytical parameters was monitored (see details in 69 

“analytical characterization”). The bottles containing the wines for the experiment 70 

were opened inside a glove chamber from Jacomex (Dagneux, France) in which 71 

atmospheric oxygen was hold under 0.002% (<3 ppm). The contents of 2 bottles were 72 

mixed in a beaker and samples for analysis representing initial time were then taken in 73 

closed vials. The remaining wine was taken out of the chamber and 500 mL volumes of 74 

each wine were saturated with air until O2 levels rose above 6 mg/L. Saturation was 75 

performed by shaking the wine in a 1 L flask 3 times for 10 s, opening the cap after 76 

each shake. Then, the 500 mL were distributed in eight 60 mL-screw capped clear glass 77 

vials supplied by WIT-France (Bordeaux, France), three of them containing PreSens 78 

PSt3 oxygen sensors from Nomacorc S.A. (Thimister-Clermont, Belgium). No headspace 79 

was left in the vials. Previous studies confirmed that the amount of O2 passing through 80 

those closures was negligible for the purposes of the experiment (<0.05 mg/L per 81 

week). Wines were stored in the dark in an incubator at 25 °C and dissolved oxygen 82 

level was monitored with a Nomasense oxygen analyzer from Nomacorc S.A. 83 

(Thimister-Clermont, Belgium) every day. When oxygen reached 10% of the initial 84 

concentration (or a week later in cases in which no more significant decrease was 85 

observed in the oxygen concentration), the vials from a given wine sample were 86 

introduced inside the oxygen-free chamber, opened and mixed. Samples for 87 

intermediate analyses were taken from the mixture and the remaining volume of wine 88 
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was taken out of the chamber for a new saturation, being distributed this time in a 89 

smaller number of tubes. This process was repeated five times. In all the saturation 90 

steps, at least two vials containing a PreSens oxygen sensor were used in order to 91 

control the reproducibility of the process. This was assessed from the 286 pairs (or 92 

trios) of replicate measurements collected during the process.  93 

Reagents, standards and materials 94 

Solvents and Chemical Standards 95 

Solvents for gas chromatography dichloromethane, methanol, hexane and diethyl 96 

ether (gas chromatography quality) were purchased from Merck (Darmstadt, 97 

Germany). Ethanol was from Panreac (Barcelona, Spain). Acetone, methanol, formic 98 

acid, ethanol, acetonitrile and sulphuric acid solvents for high-performance liquid 99 

chromatography were of HPLC grade from Scharlab (Barcelona, Spain). Water with 100 

resistance of 18.2 MΩ·cm at 25 °C was purified in a Milli-Q system from Millipore 101 

(Bedford, Germany). 102 

Chemicals used for the analytical characterization were of analytical reagent grade and 103 

were supplied by Merck, Panreac, Sigma-Aldrich (Madrid, Spain), Lancaster (Eastgate, 104 

UK), Scharlau (Barcelona, Spain), Oxford Chemicals (Hartlepool, UK), Fluka (Madrid, 105 

Spain), ChemService (West Chester, PA, USA), Extrasythèse (Genay, France) and SAFC 106 

(Steinheim, Germany). Purity of chemical standards is over 95% in all cases and most of 107 

them are over 99%. TSK Toyopearl gel HW-50F was purchased from Tosohaas 108 

(Montgomery-ville, PA, USA). 18-24 109 

Analytical Characterization 110 

Analyses of the 8 original wines and after each one of the five saturations included 111 

absorbances at 420, 520 and 620 nm, pH, free and total sulfur dioxide, free 112 
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acetaldehyde, total polyphenol index (TPI), Trolox equivalent antioxidant capacity 113 

(TEAC) and Folin-Ciocalteu index. Complementary analyses were performed at the 114 

beginning and at the end of the experiment (after oxygen is depleted in the fifth 115 

saturation): metals (Fe, Cu, Mn, Zn, Al), polyphenols (hydroxycinnamic acids, benzoic 116 

acids, stilbenes, flavanols and flavonols) and aroma compounds. 117 

Color determination and Total Polyphenol Index (TPI) 118 

Chromatic parameters were determined following the recommendation of the OIV for 119 

white and rosé wines.25 Absorbances at 420 nm, 520 nm and 620 nm were determined 120 

without any further dilution with a 1 cm path length. Total Polyphenol Index (TPI) was 121 

estimated as absorbance at 280 nm. For the TPI determination, rosé wines were 122 

diluted 1:50 and white wines 1:20 and 1 cm path length cuvettes were used. All 123 

absorbance measurements were taken in triplicate in a UV-VIS spectrophotometer UV-124 

17000 Pharma Spec from Shimadzu (Kyoto, Japan).  125 

Determination free and total sulfur dioxide and free acetaldehyde 126 

Total sulfur dioxide was determined by the aspiration oxidation method (Rankine 127 

method) following the recommendation of the OIV.26 128 

Nominally free sulfur dioxide and free acetaldehyde were determined by headspace - 129 

gas chromatography - mass spectrometry (HS-GC-MS) as described recently,27 since 130 

this method provides higher accuracies and limits of detection than the aspiration-131 

oxidation method for free SO2. HS-GC-MS analyses were performed using a GCMS-132 

QP2010 from Shimadzu with a DB-WAX (30 m x 0.25 mm i.d. x 0.25 µm film thickness) 133 

column from J&W Scientific (Agilent Technologies, Santa Clara, CA, USA) as described 134 

in the reference.27 135 

Trolox equivalent antioxidant capacity (TEAC) 136 
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TEAC assay is based on decolorization of the radical cation ABTS•+ when it is reduced to 137 

ABTS by an antioxidant.  The assay was performed following the procedure described 138 

by Rivero-Perez et al. 18 White and rosé wines were diluted 1:10 in 0.075 M phosphate 139 

buffer (PBS) at pH 7.4. In a test tube 200 µL of each diluted sample was mixed with 140 

9800 µL of ABTS•+ previously prepared to give an absorbance value of 0.70 ± 0.02 at 141 

734 nm. Absorbance measurements were taken at 734 nm in duplicate with 1 cm path 142 

length cuvettes in a UV-VIS spectrophotometer UV-17000 Pharma Spec from 143 

Shimadzu. 144 

Folin-Ciocalteu assay 145 

Folin–Ciocalteau assay was performed as described by Singleton et al. 19 White and 146 

rosé wines were diluted 1:5 with Milli-Q water. An aliquot of 750 µL of the sample was 147 

mixed with 500 µL of Folin- Ciocalteau reagent (Sigma-Aldrich) and 2 mL of a Na2CO3 148 

solution at 20% in water. The mixture is brought to 10 mL with Milli-Q water. The 149 

reaction takes place in darkness at room temperature for 2 hours and absorbance is 150 

then measured at 760 nm in 1 cm cuvettes using a UV-VIS spectrophotometer UV-151 

17000 Pharma Spec from Shimadzu. The assay was performed in duplicate and results 152 

of phenolic content were expressed in mg of gallic acid equivalents per liter of wine.  153 

Quantitative analysis of metals 154 

Metal analyses included the determination of iron, copper, manganese, zinc and 155 

aluminum. Microwave-assisted digestion was used as sample treatment and they were 156 

analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES) as is 157 

described by Gonzalvez et al. 20 158 

Analysis of polyphenols   159 
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Polyphenolic matter was analyzed following the method described by Gonzalez-160 

Hernandez et al. in 2014. 21 Two mL of wine were filtered by 0.45 µm and fractionated 161 

by Gel Permeation Chromatography (GPC) with a Vantage L column (120 mm x 12 mm) 162 

from Millipore (Bedforf, Ma, USA) packed with TSK Toyopearl gel HW-50F (Tosohaas, 163 

Montgomery Ville, PA, USA) to obtain 2 fractions. In fraction 1, low molecular weight 164 

phenolics were quantified by UPLC–MS, including flavonols, flavanols, 165 

hydroxycinnamic acids, phenolic acids, aconitic acid and resveratrol. Analyses by UPLC-166 

MS were performed on a liquid chromatograph Shimadzu Nexera 30AD coupled to a 167 

mass spectrometer QTRAP AB Sciex 3200 (AB SCIEX, MA, USA), with a triple 168 

quadrupole and an electrospray as ionization source (ESI Turbo VTMSource). The 169 

column was a BEH-C18 Acquity UPLC (1.7 µm, 2.1 mm x 100 mm) from Waters 170 

(Milford, MA, USA). The second fraction was not analysed as it contains polymeric 171 

matter and is not important in white and rosé wines. 172 

Aroma compounds analysis 173 

For major aroma compound determination, a liquid-liquid microextraction with 174 

dichloromethane published was carried out.22 Analyses were performed in a gas-175 

chromatograph with flame ionization detection model CP-2800 GC from Varian 176 

(Walnut Creek, CA, USA). For minor and trace aroma compounds analysis, a solid-177 

phase extraction was carried out based on the procedure described by Lopez et al. 23 178 

An aliquot of 15 mL of wine were extracted in a 65 mg LiChrolut® EN cartridge (Merck, 179 

Darmstadt, Germany), cleaned up with 1.5 mL of a 30% methanol in water at pH 3 and 180 

further eluted with 0.6 mL of dichloromethane-5% methanol (v/v). Extracts were 181 

directly analyzed by gas chromatography with ion trap mass spectrometry detection in 182 

a GC-MS model 450-GC and Saturn 2200 GC/MS from Varian. 183 
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Statistical analysis and data treatment 184 

Simple correlations and Partial Least-Squares (PLS) regressions were carried out using 185 

Excel 2013 (Microsoft, WA, USA) and The Unscrambler 9.7(CAMO Software AS, Oslo, 186 

Norway) respectively. PLS modeling was carried out using cross-validation criteria. In 187 

this strategy, the model is built leaving out one of the samples, and the predicted 188 

result for the sample out is computed as residual. The process is repeated with every 189 

sample of the calibration set, and so on until every sample has been left out once; then 190 

all prediction residuals are combined to compute the validation residual variance and 191 

Root Mean Square Error of Prediction (RMSEP).   192 
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Results and discussion 193 

Oxygen consumption in air saturation cycles 194 

Wine oxidation was carried out following a procedure based on consecutive air-195 

saturation cycles, with daily oxygen monitoring with oxygen sensors placed in screw-196 

capped clear vials. A typical plot representing oxygen consumption versus time for a 197 

particular wine is illustrated in Figure 1. The reproducibility of the process was 198 

assessed by means of the duplicate measurements taken from the independent tubes 199 

in which volumes of the same wine were distributed during oxidation, as detailed in 200 

reference. 24 In the present case, the average standard deviation for the 286 series of 201 

duplicate measurements was σ = 0.29 mg O2/L, which can be considered satisfactory 202 

and in fact, the plots obtained with different sensors were nearly superimposable.  203 

As can be seen in figure 1, oxygen is continuously consumed at decresing rates in the 204 

three first saturations, while in the last two ones O2 is consumed very fast in the first 205 

hours, but after the first measurement all the readings indicated that levels of O2 were 206 

increasing. These increases were consistently observed in the 8 wines considered in 207 

this work (see S1 in Supporting Information). To the best of our knowledge this weird 208 

phenomena has never been reported. However, it could be consistent with the 209 

oxidation mechanism recently proposed by Danilewicz28 based on previous reports on 210 

[FeII(EDTA)] oxidation mechanims.29, 30 Attending to such proposal, schematized in 211 

Figure 2a, the activation of oxygen with Fe(II) with the help of Cu(II) produces the [FeIII-212 

O2
•]2+ radical complex (reaction 1). This complex can be reduced by Fe(II) into a 213 

diironIII-dioxygen complex (reaction 2) which would finally rend H2O2 and Fe(III) 214 

(reaction 3). In the presence of oxidizable catechols this Fe(III) would be reduced back 215 
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to Fe(II), restoring the catalytic cycle. However, if the reduction fails due to lack of 216 

catechols in white and rosé wines, Fe(III) would accumulate and would oxidize back the 217 

[FeIII-O2
•]2+ superoxo complex releasing O2 (reaction 4 in Figure 2a), which would 218 

explain the plot in Figure 1. A second alternative explanation for the observed 219 

increases in oxygen levels is based in the Fenton reaction shown in figure 2b,29 in 220 

which ethanol is oxidized to acetaldehyde through a radical mechanism. In this case, 221 

the reaction takes place when there is no SO2 available to scavenge H2O2 –and levels of 222 

free SO2 in the last saturations are very low-. Attending to the scheme, the 223 

hydroxyethyl radical would react to O2 to yield as reaction subproducts hydrogen 224 

peroxide and oxygen.   225 

In any case, it is obvious that oxygen consumption rates in these wines cannot be 226 

interpreted by simple first or pseudo first order kinetic models.   227 

Oxygen consumption rates 228 

When the accumulated oxygen consumed is represented vs. time, a typical pattern 229 

such as the one shown in Figure 3, emerges. It can be seen that the amount of oxygen 230 

consumed in each saturation cycle becomes progressively smaller, in agreement with 231 

old reports.33 These functions were fitted to a second-grade polynomial, which was 232 

further used to determine the oxygen consumed at 5, 20 and 30 days. The 233 

corresponding average oxygen consumption rates (OCRs) are given in Table 2. It can be 234 

observed, that although average OCRs decrease with time for all samples, decreases 235 

are more pronounced for the samples showing fastest initial OCRs. In consequence, 236 

the ranges in which those rates span shrinks from 0.258-0.833 for the 5 days OCR to 237 
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0.235-0.563 for the 30 days OCR. Rates were in general much smaller than those 238 

observed for red wines.24 239 

Correlation analysis revealed that just a limited set of chemicals was related to the 240 

different OCRs. The 5-days OCRs were significantly and positively correlated (P<0.05) 241 

to gallocatechin and copper. 20-days OCRs were positively correlated just with copper. 242 

30-days OCRs were positively correlated to coutaric, trans-cinnamic, cis-ferulic acids 243 

and to copper (data not shown). Following, PLS models with a quite satisfactory 244 

prediction ability could be built for the three OCRs, as summarized in table 3 (models 1 245 

to 3). All models are quite similar in structure, explain between 89.7% and 95.9% of the 246 

original variance by cross-validation, and suggest that copper and flavonols and, to a 247 

lesser extent, hydroxycinnamic acids are the key compounds determining OCRs in 248 

whites and rosés. While, to the best of our knowledge, there are no previous reports 249 

suggesting the role of flavanols on OCRs, copper is confirmed as the main and more 250 

universal responsible for the ability of a given wine to consume oxygen.7, 32   251 

It is worth mentioning, that models do not identify any relevant influence of SO2 or Fe 252 

contents on the wine OCRs, in spite of the known role played by these compounds in 253 

wine oxidation.7, 33 This apparent incongruence may imply that these compounds are 254 

present in wine at levels at which they are not kinetically limiting. Alternatively, it may 255 

be thought that what determines OCRs are the activities of Fe2+ and Fe3+, or their 256 

ratios as suggested by Danilewicz in 2016,34 and the level of “truly” free SO2. In 257 

contrast, the parameters measured in the present work are total Fe and “nominally” 258 

free SO2, 27 which may not reflect the levels of the kinetically relevant parameters.  259 

Consumption of sulfur dioxide 260 
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The evolution of the total SO2 content of the wines during oxidation is summarized in 261 

Figure 4. As can be seen, in most samples SO2 decreases following a linear trend during 262 

several saturation cycles, ending in some cases with a steeper SO2 consumption in the 263 

last saturations. The slopes of the linear segments represent the mg/L of SO2 264 

consumed per mg/L of O2 consumed during the first saturations and range between 265 

1.2 and 5.4. Transformed into molar ratios, the ratios consumed SO2: consumed O2 for 266 

these wines in those linear periods ranged between 0.3 and 2.7 as detailed in Table 4. 267 

This last unexpected value (case of W3), significantly above the maximum theoretical 268 

value of 2, could be most likely due to the fact that in that wine there was so much 269 

free SO2 (see Table 1) that some was lost by evaporation during the air saturation of 270 

the wines. The lowest molar ratio corresponds to Rs2 which contained already lowest 271 

levels of free SO2. Leaving aside this particular case, molar ratios are quite diverse, 272 

ranging from 1 to 2, and were not significantly correlated to any single wine 273 

compositional parameter, indicating that the ability of a wine to consume its own SO2 274 

during oxidation depends on several factors. 275 

These were assessed by PLS modeling. A model with a quite satisfactory explaining 276 

ability (94% by cross validation) could be built and is summarized in Table 3 (model 4). 277 

The largest coefficient of the model is given to free SO2, meaning that a first obvious 278 

requisite for a wine to consume SO2 is having it in free form. This was not observed in 279 

red wines, for which total SO2 seems to be most influential in SO2 consumption. This 280 

may be attributed to the smaller activity of free SO2 in red wines as a consequence of 281 

complexes with anthocyanins and also to their higher ability to remove free 282 

acetaldehyde by condensation reactions which facilitates the dissociation of bound 283 

SO2. The model also suggests that the ability of the wine to consume SO2 during 284 

Page 14 of 36

ACS Paragon Plus Environment

Journal of Agricultural and Food Chemistry



 

 

15 

 

oxidation is positively related to its pH, TPI, Folin-Ciocalteu index and the wine content 285 

in Mn.  286 

Remarkably, in three of the wines (Rs1, W1 and particularly W5) the slopes of the 287 

functions in Figure 4 become strikingly steeper, meaning that in those last saturations 288 

more SO2 is being consumed per unit of O2. The extreme case is that of W5 for which 289 

the consumption of O2 in the last two saturations is very low (0.45 mg/L) and yet there 290 

is a strong consumption of SO2 (14 mg/L). If instead of consumed O2, the plot in Figure 291 

4 is re-plotted representing time in abscissas, the functions become strictly lineal (see 292 

SI). This reveals that SO2 had been consumed at a constant temporal rate in all wines, 293 

while O2 was consumed at progressively smaller rates in the experiment. This 294 

unexpected result suggests that in some wines, notably in W5, some of the chemical 295 

species oxidized in the first three saturations were reduced back by SO2 two weeks 296 

later.  297 

A satisfactory and quite simple PLS model explaining SO2 consumption rates was also 298 

built (model 5 in Table 3). The model explains 92% of the variance by cross-validation 299 

and the main variables are free SO2 and the Folin-Ciocalteau (FC)/TEAC ratio, both with 300 

positive sign. This ratio can be roughly attributed to the ratio general 301 

antioxidant/scavenger contents of the wine. Therefore, the model suggests that while 302 

most wine polyphenolics are oxidized with concomitant consumption of SO2, 303 

compounds with scavenging activities may compete with SO2 for some radicals. The 304 

existence of SO2 competitors has been previously suggested.24    305 

Chemical changes caused by oxidation 306 
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As in a previous paper,35 the changes in the chemical composition caused by oxidation 307 

have been studied by two simple statistical techniques. First, paired t statistical 308 

comparisons were applied to determine which changes were, in average, significant. 309 

Second, the correlation between the magnitude of the change with the O2 consumed, 310 

segregated into several categories, was studied by correlation analysis. The categories 311 

in which consumed O2 was segregated were “O2 in SO2”, “O2 not SO2”, “O2 pre SO2” 312 

and “O2 at free SO2 below 10 mg/L”. The two first ones are complementary and 313 

represent the consumed O2 which can (O2 in SO2) or cannot (O2 not SO2) be attributed 314 

to the total SO2 consumed by the wine, assuming a 2:1 molar ratio (SO2:O2). The third 315 

one, O2 pre SO2, is similar to O2 not SO2 but referred just to the first saturation cycle. 316 

The last one, O2 at free SO2 below 10 mg/L, represents the amount of O2 consumed by 317 

the wine at low free SO2 levels, situation in which the presence of free radicals is 318 

expected. 319 

The major changes introduced by oxidation in the phenolic composition of the wines 320 

were relevant increases in the levels of phenolic acids and decreases in those of 321 

flavanols, and flavonols, in accordance with previous reports.36 Levels of benzoic acids 322 

increased in average 5.2 mg/L (39%) and those of hydroxycinnamic acids 4.0 mg/L 323 

(10%), although increases could also be related to the hydrolysis from their tartaric 324 

esters. Average levels of flavanols decreased not significantly by a 4%, while those of 325 

flavonols by a 2%. Increases in cis and trans-ferulic acids were negatively and 326 

significantly correlated to “O2 in SO2”, indicating that their formation takes preferably 327 

place when SO2 consumption is low. Contrarily, the decrease of kaempferol-3-328 

rutinoside was significantly and negatively correlated to O2 at SO2 <10.  329 
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Regarding aroma, levels of most non polar aroma compounds decreased during the 330 

process (data not shown), which should be attributed to losses by evaporation during 331 

the experiment, as previously discussed.24 Other changes were correlated to some of 332 

the parameters related to oxygen and SO2 consumption and are summarized in table 5. 333 

The most remarkable change is the increment of free acetaldehyde (increases of other 334 

oxidation-related aldehydes were discussed in a previous reference).37 Such increment 335 

is strongly correlated to the O2 not SO2, and negatively correlated to the SO2:O2 molar 336 

ratio. This result was expected and is in complete agreement with the Fenton-based 337 

radical-mediated oxidation. It should be noted, however, that in red wines the 338 

opposite correlation was found, which was attributed to the many polyphenols able to 339 

react with acetaldehyde present in reds.38 340 

Not many other changes were related to this “O2 not SO2” parameter; levels of δ-341 

octalactone, 4-ethyl phenol and 4-vinylguaiacol bear also positive correlations, which 342 

may suggest that these compounds may be the endpoint of radical-mediated oxidation 343 

of different precursors, such as fatty acids and polyphenols. It is also remarkable, that 344 

in contrast with red wines, the changes related to the category “O2 preSO2” were much 345 

limited and affected particularly to volatile phenols, such as guaiacol, 4-ethylphenol 346 

and 4-vinylguaiacol. The relatively smaller effect of this category may support the 347 

smaller real availability of free SO2 in red wines as a consequence of the complexes 348 

with anthocyanins,39 while the fact that most correlations are positive support that 349 

these compounds are the endpoint of the radical-mediated oxidation of some 350 

polyphenols which, surprisingly, seems to take place in the first saturation. All these 351 

observations confirm the need for analytical methods able to measure the real 352 

availability of SO2 40 and for a deeper study of the first phase of oxidation.41 353 
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Finally, the total amounts of O2 consumed during the oxidation, and the O2 not SO2 354 

parameter, have been related to the major changes suffered by the wine during the 355 

oxidation using PLS modeling. Results are summarized in Table 3 (models 6 and 7). The 356 

model for total O2 consumed stated, as expected, that O2 is invested mostly in 357 

oxidizing SO2 and in producing acetaldehyde and acetic acid, both the major oxidation 358 

products of ethanol. The model for the amount of O2 consumed without concomitant 359 

SO2 consumption, specifies that in addition to oxidize ethanol, O2 goes into the 360 

degradation of flavonols and the production of hydroxycinnamic acids.  361 

In conclusion, whites and rosés consume oxygen at smaller rates than reds, and OCRs 362 

decrease continuously with consecutive saturation cycles. In the last cycles, O2 levels 363 

decrease sharply in the first hours, but later consistently increase, which suggests an 364 

oxidation mechanism in which O2 can be regenerated by reversion of slow reactions. 365 

OCRs were satisfactorily modelled, being proportional to wine copper, quercetin and 366 

kaempherol contents, and negatively proportional to cinnamic acids. The molar ratio 367 

consumed O2:SO2 is quite variable and depends on a number of factors, being the most 368 

important the free SO2 content, followed by pH, Folin-Ciocalteu index, Mn, and TPI. 369 

Wines consume SO2 at a constant temporal rate; as some wines were nearly unable to 370 

consume O2 in the last saturations, this may imply that chemical species oxidized in the 371 

first three saturations are reduced back by SO2 two weeks later. Changes in aroma 372 

compounds suggested that some volatile phenols are the endpoint of radical-mediated 373 

oxidation of some polyphenols taking place preferably in the first air-saturation which 374 

confirm the need for studying the first phase of oxidation with analytical tools able to 375 

measure the real availability of SO2. 376 
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Figure captions 

 

Figure 1. Average oxygen concentration measured in the set of tubes containing the 

same wine (sample W4 in the plot) throughout the experiment. Standard deviation is 

shown as error bars. 

 

Figure 2. Scheme for a) the reduction of oxygen by Fe(II) to produce hydrogen peroxide 

and possible reversion by Fe(III); b) Fenton reaction for oxidation of ethanol and 

involvement of oxygen to regenerate hydrogen peroxide and oxygen. Adapted from 

reference.29 

 

Figure 3. Plot relating cumulated oxygen consumed versus time in a white wine 

(sample W4). Standard deviation is shown as error bars. 

 

Figure 4. Plot relating the evolution of total SO2 levels, measured at the end of each 

saturation, to the amount of O2 consumed by each wine. Standard deviation is shown 

as error bars. 
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 Tables 

Table 1. Wine samples used in the study: type, origin and relevant information 

regarding their oxidative behavior 

Wine 
Code 

Color 
Denomination 

of origin 
Grape 
Variety 

Vintage 
Ethanol 

(v/v) 
pH TPI 

TEAC (eq. 
Trolox 
mM) 

Folin (eq. 
Gallic acid 

mg/L) 

Total 
SO2 

(mg/L) 

Free 
SO2 

(mg/L) 

Cu 
(mg/L) 

Fe 
(mg/L) 

Mn 
(mg/L) 

Rs 1 Rosé Somontano CS 2012 13.5 3.23 14.00 7.06 597.9 90.4 23.1 0.178 1.981 1.222 

Rs 2 Rosé Navarra Ga 2012 13 3.19 11.45 6.94 437.8 61.6 5.1 0.185 12.52 0.766 

Rs 3 Rosé Rioja Ga 2012 13.5 3.27 12.75 5.79 488.4 102.4 17.7 0.227 9.376 0.761 

W 1 White Calatayud Ma 2012 14 3.31 10.59 5.11 410.6 105.6 26.9 0.345 3.038 0.571 

W 2 White Cariñena Ch 2012 13.5 3.48 11.66 5.03 378.3 107.2 18.7 0.140 2.252 1.161 

W 3 White Rías Baixas Al 2012 12.5 3.27 11.48 5.98 509.3 153.6 47.3 0.208 1.773 1.466 

W 4 White Rueda Ve 2012 13 3.29 10.15 4.19 353.6 99.2 24.3 0.180 2.628 1.508 

W 5 White Rueda Ve 2012 12 3.28 7.57 6.34 387.8 163.2 31.8 0.188 1.908 1.376 

CS: Cabernet-Sauvignon; Ga: Garnacha; Ma: Macabeo; Ch: Chardonnay; Al: Albariño; Ve: Verdejo. 
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Table 2. Oxygen Consumption Rates (OCRs) in White and Rosé Wines. 

 

R2 
(2nd degree 
Polynomial 
Regression) 

5-days 
OCR 

(mg O2/L/ 
day) 

20-days 
OCR 

(mg O2/L/ 
day) 

30-days 
OCR 

(mg O2/L/ 
day) 

Rs 1 0.984 0.631 0.409 0.306 
Rs 2 0.989 0.514 0.387 0.321 
Rs 3 0.995 0.562 0.459 0.393 
W 1 0.998 0.833 0.678 0.563 
W 2 0.996 0.258 0.249 0.235 
W 3 0.998 0.364 0.339 0.310 
W 4 0.999 0.662 0.552 0.472 
W 5 0.992 0.503 0.377 0.283 

Average 0.995 0.541 0.435 0.368 
Maximum 0.999 0.833 0.678 0.563 
Minimum 0.989 0.258 0.249 0.235 
Max/Min 

 
3.226 2.718 2.396 
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Table 3. PLS models explaining different kinetic parameters related to the O2 and SO2 

consumption of wines as a function of the chemical composition of the wines or of the 

major changes introduced by oxidation. Values between brackets are the model 

quality parameters obtained by cross validation 

Nº Parameter R2 RMSE PLS Regression Model 

1 5 days OCR 
0.984 

(0.897) 
0.021 

(0.061) 
OCR = 0.541 + 0.15 Quercetin-3-glucuronide + 
0.172 Cu – 0.064 t-Cinnamic acid 

2 20 days OCR 
0.993 

(0.953) 
0.010 

(0.031) 

OCR = 0.426 + 0.025 Quercetin-3-glucuronide 
+ 0.05 Kaempferol-3-galactoside + 0.108 Cu 
– 0.002 Coutaric acid 

3 30 days OCR 
0.977 

(0.959) 
0.015 

(0.023) 
OCR = 0.357 + 0.024 Quercetin-3-glucoside + 
0.039 Kaempferol-3-galactoside + 0.089 Cu 

4 
Molar ratio 

(SO2:O2) 
0.9874  

(0.9365)
a
 

0.0755  

(0.1937)
a
 

Molar ratio (SO2:O2) = 1.529 + 0.385 Free SO2 
+ 0.231 TPI + 0.295 pH + 0.257 Folin-Ciocalteu 
Index + 0.255 Mn 

5 
SO2 consumption 

rate 
(mgSO2/L/day) 

0.9499 

(0.9248)
 a

 

0.0767 

(0.1073)
 a

 

SO2 consumption rate = 1.072 + 0.244 Free 
SO2 + 0.189 (Folin-Ciocalteau/TEAC)  

6 
Total O2 

consumed (mg/L) 
0.975 

(0.868) 
0.508 

(1.338) 

O2 consumed = 11.4 + 3.85 ∆Acetaldehyde + 
1.89 ∆Acetic – 2.3 ∆total SO2 – 0.314 ∆Total 
hydroxycinnamic acids – 0.16 ∆Total flavonols 

7 O2 not SO2 (mg/L) 0.958 
(0.849) 

0.728 
(1.58) 

O2 not SO2= 2.74 + 4.22 ∆Acetaldehyde + 1.32 
∆Acetic + 0.777 ∆Total hydroxycinnamic acids 
– 0.779 ∆Total flavonols 
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Table 4. Consumption of total SO2 during wine oxidation: Consumed SO2/Consumed O2 

molar ratios estimated in the linear regions of plots equivalents to those shown in 

Figure 4 but in molar concentration (Total SO2 vs. Consumed O2) and SO2 consumption 

rates. 

 Total SO2 vs. Consumed O2 Total SO2 vs. Time 

  
Saturations 
within the 

linear range 
R Slope (SD) 

Molar 
ratio 

(SO2:O2) 

R 
(saturations 

0-5) 
Slope (SD) 

SO2 
consumption 

rate 
(mgSO2/L/day)  

Rs 1 0-5 -0.954 -2.11 (0.33) 2.11  -0.979 -1.13 (0.12) 1.13 
Rs 2 0-3 -0.979 -0.32 (0.09) 0.32  -0.943 -0.33 (0.06) 0.33 
Rs 3 0-5 -0.985 -1.49 (0.13) 1.49  -0.988 -1.09 (0.08) 1.09 
W1 0-3 -0.998 -1.02 (0.04) 1.02  -0.994 -1.27 (0.07) 1.27 
W2 0-5 -0.979 -1.89 (0.20) 1.89  -0.983 -0.87 (0.08) 0.87 
W3 0-5 -0.998 -2.69 (0.09) 2.69  -0.993 -1.61 (0.10) 1.61 
W4 0-5 -0.983 -1.37 (0.13) 1.37  -0.996 -1.23 (0.06) 1.23 
W5 0-3 -0.990 -1.34 (0.13) 1.34  -0.998 -1.06 (0.03) 1.06 
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Table 5. Changes in the levels of aroma compounds observed during the oxidation 
experiment and observed correlations with the different O2 consumption parameters 

Compounds 
Average Increment 

(µg/L) 
Relevant Correlation 

Acetaldehyde a 14.0 (1274%) *** 
 0.908 ** (O2 not SO2); 0.916 ** (O2 preSO2); -0.856 ** (SO2:O2 Molar 
ratio) 

Isobutanol a -1.01 (-6%) ** 0.746 * (total O2)  

Ethyl 
isobutyrate 

ns -0.781 * (O2 preSO2) 

δ-octalactone ns 0.778 * (O2 not SO2);  

Ethyl cinnamate ns -0.831 * (total O2) 

Guaiacol 5.46 (40%) * 0.805 * (O2 preSO2) 

4-ethylphenol ns 
0.748 * (O2 not SO2) ; 0.930 ***(O2 preSO2); -0.752 * (SO2:O2 Molar 
ratio) 

4-vinylguaiacol ns 0.708 * (O2 not SO2) ; 0.841 **(O2 preSO2)  

4-vinylphenol 9.89 (89%) **  

Syringaldehyde 0.14 (53%) *  

Vanillin 7.30 (48%) ** 
 

Ethyl vanillate 0.70 (14%) * 
 

a : Concentration in mg/L. ns: not significant. *P < 0.05. **P < 0.01. ***P < 0.001.  O2 in SO2in the O2 

consumed with equivalent consumption of SO2 assuming a 2:1 molar ratio. SO2:O2 O2 not SO2 is the O2 

consumed without equivalent consumption of SO2 assuming a 2:1 molar ratio SO2:O2. O2 preSO2 is the 

O2 consumed without equivalent consumption of SO2 in the first saturation. 
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Figure graphics 
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Figure 3 
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Figure 4 
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