Release and Formation of Oxidation Related Aldehydes during Wine Oxidation

Mónica Bueno^a, Vanesa Carrascón^a, Vicente Ferreira^{*a}

^a Laboratorio de Análisis del Aroma y Enología (LAAE). Instituto Agroalimentario de Aragón (IA2), Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, 50009, Zaragoza, Spain

* To whom correspondence should be addressed

Phone: 34976 762067

Fax: 34 976761292

Email: vferre@unizar.es

1 ABSTRACT

2 Twenty-four Spanish wines were subjected to five consecutive cycles of air saturation at 3 25°C. Free and bound forms of carbonyls were measured in the initial samples and after 4 each saturation. Non-oxidized commercial wines contain important and sensory relevant 5 amounts of oxidation-related carbonyls under the form of odorless bound forms. Models 6 relating the contents in total aldehydes to the wine chemical composition suggest that 7 fermentation can be a major origin for Strecker aldehydes: methional, 8 phenylacetaldehyde, isobutyraldehyde, 2-methylbutanal and isovaleraldehyde. Bound 9 forms are further cleaved releasing free aldehydes during the first steps of wine 10 oxidation, as a consequence of equilibrium shifts caused by the depletion of SO_2 . At 11 low levels of free SO₂, de novo formation and aldehyde degradation are both observed. 12 The relative importance of these phenomena depends on both the aldehyde and the 13 wine. Models relating aldehyde formation rates to wine chemical composition, suggest 14 that amino acids are in most cases the most important precursors for *de novo* formation.

15 KEYWORDS

16 Methional, phenylacetaldehyde, sulfur dioxide, Strecker aldehydes, bound forms.

18 INTRODUCTION

19 It is undeniable that some oxidation during wine making and aging is required in order to reach wine optimum quality.¹ Positive effects of controlled oxidation are the decrease 20 of wine astringency² and the stabilization of wine color.^{3, 4} However, oxidation can also 21 lead to major negative modifications in wine composition and sensory properties, such 22 as the development of yellow and brown colors⁵ and wine aroma deterioration.^{1, 6} 23 24 Oxidative spoilage of wine aroma comprises the loss of citric and fresh aromas by reaction between polyfunctional mercaptans and quinones formed in the oxidation^{7, 8} 25 26 and the development of powerful oxidation related odorants such as phenylacetaldehyde (honeylike)⁹ and methional (boiled potato odor).¹⁰ At low concentrations these 27 28 aldehydes may add to the complexity of a wine, but at higher levels, they are responsible for the loss of freshness¹¹ and for the development of specific oxidation-29 related off-odors.¹² In those wines in which polyfunctional mercaptans are not key 30 31 aroma compounds, the formation of these aldehydes is the main cause of wine aroma 32 deterioration.

33 On the other hand, carbonyls in general, and aldehydes in particular, are highly reactive molecules. They are able to react to wine polyphenols¹³ and they can also form strong 34 reversible intermolecular interactions with many molecules such as SO₂, amino acids 35 and proteins and other chemical species.^{14 - 16} The adducts that wine carbonyls form 36 with SO₂ (chemically α -hydroxyalkylsulfonates), may play a particularly outstanding 37 38 role on the development of oxidation related-off odors in wines. Their existence would 39 imply in fact that wine may contain a pool of powerful oxidation related odorants under 40 the form of non-volatile and hence non-odorous complexes. At least theoretically, such 41 a pool could release back into the wine the free odorants, as SO₂ disappears by

oxidation or by reaction with other wine components. This possibility has been recently 42 suggested when the aldehyde formation rates of wines exposed to different levels of 43 oxygen were found to be strongly correlated to the wine levels in combined SO_2 .⁶ 44 Previous observations about the strong differences in volatility of wine aldehydes¹⁷ 45 46 would be also consistent with the relevance of their bound forms. The documented existence of those adducts^{18, 19} and the likely reversibility of the equilibrium, makes 47 that, without the ability to discern free from bound forms, it is not possible to make a 48 49 correct diagnose about the nature of the problem. The observed increments of aldehydes 50 during wine bottle storage might be the simple consequence of the release of bound forms once SO₂ is depleted^{20 - 23} – in this case bound forms should decrease -, but they 51 52 could also be formed by direct oxidation of precursors - in this case total forms should 53 increase -. Preventive and remedial actions would be completely different in each case.

54 Recently, an analytical procedure specifically designed to measure free forms of aldehydes and to estimate bound forms has been developed and validated.¹⁹ Such a 55 56 procedure will be herein used in order to get more precise insights into the chemical processes involved in the development of oxidation-related aldehydes during wine 57 58 oxidation. Specific goals of the present research are: 1) to assess the presence of bound 59 forms of aldehydes in non-oxidized commercial wines; 2) to assess which changes in 60 levels of free forms of aldehydes should be attributed to release from adducts and which 61 ones to *de novo* formation or to other chemical processes; and 3), to obtain clues about the potential origin of both, adducts and of aldehydes formed de novo. 62

64 MATERIALS AND METHODS

65 Chemicals

Ethanol, dichloromethane and methanol were supplied by Merck (Darmstadt, 66 Germany), tartaric acid 99%, glycerol 99.5%, 1,2-propanediol 99.5% and sodium 67 68 metabisulfite 97% were from Panreac (Barcelona, Spain), acetonitrile and sodium 69 hydroxide 99% were from Scharlau (Barcelona, Spain). Water was purified in a Milli-O system from Millipore (Bedford, Germany). Chemicals used for the analytical 70 71 characterization were analytical grade and were supplied by Aldrich (Madrid, Spain), 72 Fluka (Madrid, Spain), Chem Service (West Chester, PA, USA) and Firmenich 73 (Switzerland). Purity of chemical standards is over 95% in all cases and most of them are over 99%. Specific details can be obtained from method references ^{19, 24 - 35}. 74

75 Analytical Characterization

76 Analysis carried out in the original wines and in sample taken after each one of the 77 saturation cycles included absorbance at 280, 420, 520 and 620 nm, free and total sulfur 78 dioxide, free carbonyls and free acetaldehyde. Exhaustive analyses performed at the 79 beginning of the experiment included total carbonyls, pH, metal cations, different 80 aldehydes precursors such as amino acids or alcohols, trolox equivalent antioxidant 81 (TEAC) and Folin-Ciocalteu, polyphenols (21 capacity anthocyanins. 12 hydroxycinnamic acids, 9 benzoic acids, trans and cis-aconitic acids, ellagic acid, 2 82 83 stilbenes, 8 flavanols, 21 flavonols, 3 proanthocyanidins, average polymerization degree 84 and other parameters of polymeric polyphenols), protein precipitable proanthocyanidins 85 and polymeric pigments.

The quantitative determination of free sulfur dioxide was carried out by direct GC-MS analysis of the headspace in equilibrium over the acidified wine sample. HS-GC-MS

88 analyses were performed using a GCMS-QP2010 from Shimadzu (Kyoto, Japan) with a 89 DB-WAX (30 m x 0.25 mm i.d. x 0.25 µm film thickness) column from J&W Scientific 90 (Agilent Technologies, Santa Clara, CA, USA). 4.5 mL of wine were transferred to a 10 91 mL standard headspace vial, to which 20 µL of 2-chloroethanol was added as internal 92 standard, capped, and further acidified with 500 µL of orthofosforic acid (85%) just 93 before the analysis. Samples were incubated at 40°C for 15 minutes and 400 µL of the headspace were injected in a split/splitless injector at 200°C in split mode with a 1:4 94 95 split ratio. Linear velocity was kept at 44.2 cm/s. The temperature program was 50 °C 96 for 4 min, then raised at 50°C/min to 220°C keeping this temperature for 5 min. The 97 mass spectrometer was used in single ion monitoring (SIM) mode. Sulfur dioxide 98 (retention time (tr) 1.870 min) was monitored at m/z 48 and 64 and 2-chloroethanol (tr 99 = 6.626) with m/z 44, 49 and 80. Quantitative data were obtained by interpolation of 100 relative peak areas in the calibration curves made with synthetic wine (5g/L tartaric 101 acid, 12% ethanol, 1.5 % propane-1,2-diol, 10 g/L glycerin, pH 3.5) containing known 102 amounts of sulfur dioxide, obtained by dissolving sodium metabisulfite (Na₂S₂O₅) from 103 Panreac (Barcelona, Spain). This calibration solution was freshly prepared from the 104 solid just before the analysis. A validation study carried out with more than 20 wines 105 demonstrated that results were comparable to those provided by the aspiration/titration 106 method, but precision (RSD(%)<5% for free SO2 above 5 mg/L) and sensitivity (1 107 mg/L) were better.

Total sulfur dioxide was determined by the aspiration/titration method (Rankine method recommended by the OIV, International Organization of Vine and Wine).²⁸ Combined sulfur dioxide levels were calculated as the difference between total and free sulfur dioxide. The determination of free forms and the simultaneous estimation of bound forms of 14 odor-active carbonyls in wine is described in the method proposed by Bueno et al.¹⁹ The wines were spiked with surrogates, other carbonyls not present in the original wine and with chemical and SO_2 bonding properties very similar to those of wine natural carbonyls. Carbonyls in the headspace were preconcentrated on a PDMS/DVB fiber and are further analyzed on a GC–MS equipped with a quadrupole in SIM mode.

Metals analyzed were copper, iron, manganese and zinc. Microwave assisted digestion was used as sample treatment. Samples were further analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES), as described by Gonzalvez et al.²⁶

121 A precolumn derivatization procedure with aminoquinolyl-N-hydrosysuccinimidyl 122 carbamate (AQC) for the determination of amino acids levels (valine, methionine, 123 isoleucine, leucine, phenylalanine) in wines using a quaternary high-performance liquid 124 chromatography (HPLC) eluent system was followed as described by Hernandez-Orte 125 et al.²⁷

126 The determination of different major aroma compounds such as isobutanol, isoamyl 127 alcohol, benzyl alcohol, methionol, β -phenylethanol were carried out using a variation of the method published by Ortega et al.²⁹ as described elsewhere.³⁵ The strategy 128 129 followed a liquid-liquid microextraction with dichloromethane and uses several internal 130 standards to correct for matrix effects (recoveries above 95% in all cases). 2-butanol 131 was used as internal standard for isobutanol, 4-methyl-2-pentanol for isoamyl alcohol 132 and benzyl alcohol and 4-hydroxy-4-methyl-2-pentanone for methionol and β -133 phenylethanol, all of them spiked at 1.5 mg/L to the wine. Analyses were carried out 134 using a GC-3800 from Varian (Walnut Creek, CA) equipped with a flame ionization 135 detector (FID). The column used was a DB-WAX from J&W (Folsom, CA) 30 m \times 136 $0.32 \text{ mm} \times 0.5 \text{ mm}$ film thickness, preceded by a silica precolumn from Agilent 137 Technologies (Santa Clara, CA) $3m \times 0.32 \text{ mm}$ i.d. The carried gas was He at 2.2 138 mL/min. Two microliters were injected in split mode (1:20). Injector and detector were 139 both kept at 250 °C. The temperature program: 40 °C for 5 min, then raised at 4 °C/min 140 up to 102 °C, 2 °C/min up to 112 °C, 3 °C/min up to 125 °C, this temperature was kept 141 for 5 min, 3 °C/min up to 160 °C, 6 °C/min up to 200 °C and this temperature was kept 142 for 30 min.

143 TEAC and Folin-Ciocalteau assays were adapted from procedures described by Rivero-

144 Perez et al.³⁰ and Singleton et al.³³ respectively. Absorbance measurements were taken

145 by duplicate using 1 cm quartz cuvettes.

For all absorbance measurements, the UV-vis spectrophotometer UV-17000 PharmaSpec from Shimadzu (Duisbug, Germany) was used.

Protein-precipitable proanthocyanidins (PPAs) were estimated using ovalbumin as the precipitation agent and tannic acid solutions as standards. The analysis was performed using the method published by Saenz-Navajas et al.³¹ in duplicate at room temperature.

151 The procedure for polymeric pigments determination was carried out as described 152 elsewhere.³² Monomeric pigments (MP), small polymeric pigments (SPP), and large 153 polymeric pigments (LPP) were determined in a UNICAM UV2 Spectrophotometer 154 (Burladingen, Germany) in duplicate.

155 Analyses of the polyphenolic matter was performed following the method described by 156 Gonzalez-Hernandez et al.²⁴ Two mL of wine were filtered by 0.45 μ m and fractionated 157 by Gel Permeation Chromatography (GPC) in an automated fraction collector from 158 Gilson (Middleton, WI, USA) with a Vantage L column (120 mm × 12 mm) from 159 Millipore (Bedforf, Ma, USA) packed with TSK Toyopearl gel HW-50F (Tosohaas, 160 Montgomery Ville, PA, USA). Two fractions were collected and brought to dryness 161 under vacuum. Fraction 1 was dissolved in 2 mL of formic acid/water (5:95, v/v) and it 162 was further analyzed by UPLC-DAD-MS for quantifying anthocyanins and by UPLC-163 MS for quantifying flavonols, flavanols, hydroxycinnamic acids, phenolic acids, 164 aconitic acid and resveratrol. Fraction 2 was dissolved in 2 mL of methanol. The 165 vanillin (4-hydroxy-3-methoxybenzaldehyde) assay was performed according to the method described by Sun et al.³⁴ in the second fraction obtained from the GPC to 166 167 determine proanthocyanidins (PAs) in catechin equivalents units. To study the 168 polymeric matter of the samples, acid-catalyzed degradation of the second fraction in 169 the presence of toluene- α -thiol was performed according to the method described by Gonzalo-Diago et al.²⁵ 170

171 Wines and oxidation process

Twenty-four different Spanish wines (16 reds, 5 whites and 3 rosés), from different
wine making areas, were used in the present study (Associated content, Table S1).
Samples were selected to cover a wide range of different characteristics associated to
the oxidation phenomena.

176 The oxidation experiment consisted of five consecutive air-saturation cycles. The 177 chemical composition of wines before the oxidation was extensively characterized by 178 duplicate. In addition, at the end of each one of the cycles, some basic parameters were 179 also determined (see analyses details below). Two bottles of each wine were opened 180 inside a glove chamber from Jacomex (Dagneux, France) in which oxygen in the gas 181 phase was below 0.002 % (v/v). The content of 2 bottles was mixed in a beaker and after ensuring that dissolved O_2 was non-detectable (< 1 μ g/L, measured with a 182 183 fluorescence probe –OptiOx SG-9 from Mettler Toledo-España, Barcelona) samples for 184 analysis were taken in different hermetic vials. Then 500 mL were spiked with standards and surrogates as is described in Bueno et al.¹⁹ Then the spiked wine was 185 taken out of the chamber, saturated with air by gentle shaking in a 1 L closed pyrex 186

187 bottle for 10 seconds, after which the cap was opened to let fresh air get into, and the 188 shaking operation was repeated 2 more times until the oxygen level of the wine reached 189 6 mg/L. The air-saturated wine was then distributed into eight 60 mL tightly screw 190 capped clear glass vials supplied by WIT-France (Bordeaux, France), three of them 191 containing PSt3 oxygen sensors (Nomacorc S.A., Thimister-Clermont, Belgium). The 192 tubes were filled up completely, and were carefully closed avoiding any headspace. 193 Post-hoc studies revealed that with this procedure headspace ranged from nothing to a 194 bubble of air with not higher than 120 µL. Previous studies had confirmed that the 195 amount of oxygen passing through those closures was negligible for the purposes of the 196 experiment (< 0.5 mg/L per week). Wines were stored in an incubator in the dark at 197 25 °C and dissolved oxygen level was daily monitored with a Nomasense oxygen 198 analyzer from Nomacorc S.A. The oxidation cycle was considered finished once O₂ 199 levels dropped to 10% of the initial concentration or after a week. Then the vials were 200 opened and mixed inside the glove chamber within a 500 mL pyrex bottle and 58 mL of 201 wine for intermediate analyses were taken. The remaining wine was taken out for a new 202 saturation cycle in n-1 tubes, 2 of which at least contained oxygen sensors (n being the 203 number of WIT tubes used in the previous cycle). Therefore, at the end of the 204 experiment 144 samples have been generated (24 different commercial wines + 24 \times 5 205 different oxidation states).

206

Statistical analysis and data treatment

Simple statistical calculations were carried out with Excel 2013 (Microsoft, WA, USA).
Partial Least-Squares (PLS) regression were performed using The Unscrambler 9.7
(CAMO Software AS, Oslo, Norway). The quality parameters studies to evaluate the
prediction ability of the model were the slope pf the regression curve between real and

- 211 predicted Y variables (*m*), the root-mean-square error (RMSE) for the prediction and the
- 212 percentage of variance explained by the model (%EV).

213 **RESULTS AND DISCUSSION**

214 Free and bound forms of carbonyls in commercial non-oxidized wines

215 A novel method specifically designed to quantify free forms of carbonyls and to estimate bound forms of these compounds¹⁹ has been applied to determine 14 carbonyls in 24 216 217 Spanish commercial wines. Results of the analyses are summarized in Table 1 while the 218 relative distribution of bound forms estimated for each analyte or group of analytes 219 from its corresponding surrogate is summarized in Table 2. The complete set of results 220 is given in the Associated content, Table S2. As seen in the tables, only aldehydes and 221 2,3-diketones were found to be present both under free and bound forms while ketones 222 such as acetovanillone, β -damascenone or β -ionone were exclusively found as free 223 forms. This is not incompatible with the known ability of β -damascenone to irreversibly bind to sulfur dioxide.³⁶ 224

The estimations have a reasonable accuracy as determined during method validation¹⁹ 225 226 and make it possible to confirm that normal, commercial non-oxidized wines contain 227 relevant amounts of aldehydes and diketones under bound forms. Methional, 228 isovaleraldehyde and phenylacetaldehyde are found mostly under bound forms in most 229 wines (average levels between 78 and 91%). Isobutyraldehyde, 2-methylbutanal, 230 benzaldehyde, diacetyl and 2,3-pentanedione are also majorly found under bound forms 231 (>60% in average), while furfural and 5-methylfurfural are mostly as free forms but up 232 to 45% of the total wine content can be under bound forms. Deep sensory consequences 233 would be expected if these bound forms were released, since some of the bound 234 components are present at concentrations well above odor thresholds. In fact, the wine

235 contents in isovaleraldehyde would increase by factors as high as 20, those of methional 236 and phenylacetaldehyde by factors as high as 10 and those of diacetyl by factors as high 237 as 4. In the cases of decanal and acetaldehyde, the total fraction was estimated using the apparent equilibrium constant with SO₂ published elsewhere.¹⁵ In accordance to those 238 239 estimations, more than 99% of these compounds can be under bound forms in wines 240 containing high levels of free SO₂, indicating that total levels of these aliphatic 241 aldehydes can be very high and that their release may also have strong sensory 242 consequences.

243 Modelling the total aldehyde content of wine from its present chemical composition

The estimated total amounts of Strecker aldehydes found in the set of wines have been related to the wine chemical composition (summarized in Associated content, Table S3) by PLS modeling. Metal cations and the potential precursors of aldehydes: higher alcohols and Strecker amino acids, were included in the models which are summarized in Table 3.

249 The models have in all cases highly satisfactory prediction abilities with explained 250 variances over 88% (by cross-validation) and have a quite consistent structure in all 251 cases, regardless of wine type. The models suggest that the actual wine content in total 252 aldehyde can be satisfactorily predicted from the wine content in precursor amino acid, 253 precursor alcohol, Zn, combined or total SO₂ and to other components specific to each 254 aldehyde and wine type. In all cases, wine aldehyde levels are positively related to the 255 precursor alcohol and leaving aside isobutyraldehyde, also to combined or total SO₂. 256 Aldehyde levels are also in all cases (except methional in white and rosés) negatively 257 related to the wine level of Zn. The amino acid precursors seem to be also essential in 258 most models, but in these cases coefficients can be either positive or negative.

259 Although the models are not definitive evidence and further specific experimental material 260 should be produced, the observed patterns seem to favor the hypothesis that the main origin 261 of Strecker aldehydes is alcoholic fermentation. Strecker aldehydes are in fact normal 262 intermediates in the yeast amino acid synthesis and are further reduced to the corresponding 263 alcohols by dehydrogenase-class enzymes, which would explain the positive weight of the 264 alcohol in the models. The presence of free SO₂ during fermentation could trap the aldehyde 265 under bound forms avoiding its enzymatic reduction, which would be consistent with the 266 positive coefficients found for combined and/or total SO₂. The negative role of Zn would be 267 consistent with the known role played by this cation in alcohol dehydrogenases from saccharomyces and other fungus.^{37, 38} Finally, the erratic correlation coefficient of the amino 268 269 acid precursor, mostly negative except for isobutyraldehyde and for isovaleraldehyde in 270 reds, is difficult to explain since not much is really known about the relationship between 271 yeast fermentation and the presence of residues of amino acids in wine. It should be noted 272 that only in one of the cases (isovaleraldehyde in reds) free SO₂ appears with a negative 273 correlation coefficient, suggesting that the direct chemical oxidation of the alcohol or the 274 amino acid cannot be completely excluded as a formation route, although data suggest that 275 it is not the main formation path.

276 Evolution of carbonyl surrogates during oxidation

Wines were oxidized following a forced oxidation procedure consisting of five consecutive air-saturation cycles. Such a procedure provides a reasonable way to obtain samples with a controlled consumption of oxygen. Although it is apparently different to the slow oxidation suffered by the wine in the bottle, it is not that different to the oxidation suffered in the winey by the accidental exposure of the wine to oxygen. In addition, there are no obvious reasons to think that the relative ability of different wines to form or release aldehydes is going to be altered.

284 In the study, wines were spiked with surrogates representing structurally different 285 aldehydes and ketones at the beginning of the forced oxidation procedure. Surrogates 286 are non-naturally occurring wine carbonyls with chemical (including SO₂ bonding) 287 properties very similar to those of wine native carbonyls, and their presence makes it 288 possible to assess some of the chemical reactions taking place along wine oxidation. A 289 first statement is that, at least concerning aldehyde formation, the most relevant variable 290 in wine oxidation was found to be the free SO₂ level, and only when levels of aldehydes 291 were plotted versus this variable, some meaningful relationship emerged. More 292 precisely, and taking into account that free SO₂ levels measured in this work include 293 "molecular" SO₂ and HSO₃, whose relative distribution is pH dependent, the most 294 meaningful relationships emerge when free aldehyde levels are plotted either to 295 'molecular' SO₂, or to its complementary, HSO_3^- form.

296 For instance, the levels of free 3,5,5-trimethylhexanal (surrogate for isovaleraldehyde) 297 in the 144 samples generated in the forced oxidation protocol (24 different commercial 298 wines $+ 24 \times 5$ different oxidation states) are plotted in Figure 1 versus the molecular 299 sulfur dioxide level of the wines. As can be seen, there is a close relationship between 300 both variables, so that the lower the molecular SO₂ level, the higher the level of free 301 surrogate. In addition, the solid and dashed lines represent the expected free aldehyde 302 level attending to the molecular SO₂ level of the sample; to the known spiked amount of 303 surrogate; and to its apparent complex formation constant measured both in synthetic (dashed line¹⁹) or real (solid line) wines. Taking into account that the surrogate is not 304 305 naturally formed in wine, we must unequivocally conclude that the increase is due to the 306 release of the surrogate complexed with SO₂ once this molecule is oxidized.

The figure also reveals (see the zoomed area) that at very low levels of molecular SO₂ the measured levels of free surrogate of some wines become consistently below

309 expected values with a trend towards progressively smaller values as molecular SO₂ 310 levels further drop. Such a decrease should be attributed to the oxidative degradation of 311 surrogates at those low SO₂ levels, which would be in agreement with the expected 312 generalization of the Fenton reaction once the levels of free SO₂ are no longer able to trap the H_2O_2 formed in the wine oxidation cycle.^{39, 40} In the case of 3,5,5-313 314 trimethylhexanal such decrease is observed when levels of molecular SO₂ fall below 315 0.10 mg/L. The same general pattern, with a less marked but yet obvious degradation 316 trend at very low levels of molecular SO₂, was observed for the surrogates 3-317 (methylthio)butanal and hydrocinnamaldehyde. Since there is no reason to think that 318 native wine aldehydes behave differently to their surrogates, it can be concluded that the 319 levels of free aldehydes during wine oxidation are determined at least by the three 320 following factors: 1) the previous existence of bound forms; 2) the cleavage of those 321 bound forms to release free forms attending to the chemical equilibrium sulfite + 322 carbonyl \leftrightarrow alkylhydroxysulfonate; and 3) the oxidative degradation of the aldehydes 323 taking place at very low levels of molecular SO₂. A fourth factor, namely the "de novo" 324 formation of aldehydes, will be considered in the following section.

325 The plot shown in Figure 1 and its analogues for hydrocinnamaldehyde and 3-326 (methylthio)butanal (Associated content, Figure S1), make it possible to estimate the 327 average apparent formation constants (K_a) for the three surrogates following the same 328 behavior. This was done by excluding from the representation those data points at very 329 low levels of molecular SO₂ affected by degradation and representing the inverse of the 330 molar concentration of complexed aldehyde versus the inverse of the molar 331 concentration of molecular SO₂. Since the adducts aldehyde-SO₂ have a 1:1 stoichiometry,⁴¹ such representation should yield a straight line whose slope is $1/K_a$, 332 333 attending to Equation 1,

$$334 \quad \frac{1}{B} = 1 + \frac{1}{K_a} \times \frac{1}{[\text{molecular SO}_2]} \qquad [1]$$

335 where B represents the molar concentration of complexed aldehyde, obtained as the 336 difference between the concentration of surrogate added and its free measured 337 concentration in each sample. These plots in the three cases showed good straight lines 338 with intercepts not significantly differing from 1, as expected from Equation 1 (see 339 Associated content Figure S2). The constants obtained were similar, although smaller than those measured in synthetic wine.¹⁹ The values obtained were $(17.1 \pm 0.6) \times 10^5$, 340 $(6.20 \pm 0.04) \times 10^5$ and $(9.30 \pm 0.51) \times 10^5$ for 3,5,5-trimethylhexanal, 341 342 hydrocinnamaldehyde and 3-(methylthio)butanal respectively.

343

344 Evolution of native carbonyls during wine oxidation

345 The previous observations can help to understand the observed evolutions of free native 346 aldehydes during wine oxidation. A plot free-methional vs. molecular SO₂ for one of the 347 wine samples is given in Figure 2. The solid line represents the evolution of measured 348 free methional in the wine during oxidation and the horizontal dashed line corresponds 349 to the estimated levels of total methional present originally in wine. The dotted line, 350 partially concealed by the solid line, represents the levels of expected free methional 351 estimated from the total methional originally present in the wine, the apparent formation constant for the adduct and the molecular SO₂ level of the sample. It is evident from the 352 353 plot, that estimated and measured free amounts of methional are totally coincident in the two first samples, those taken at levels of molecular SO₂ above 0.1 mg/L, meaning that 354 355 the observed increases in free methional in this region can be attributed to the cleavage 356 of its hydroxyalkylsulfonate, so that in this phase of oxidation increases are really the result of release. In the last three sampling points, however, the estimated levels fall well below the measured levels, strongly suggesting that at those low levels of molecular SO₂, strong *de novo* formation of methional from different precursors is actively taking place. As aforementioned, such *de novo* formation at those low levels of molecular SO₂ would be consistent with the development of Fenton reaction once SO₂ cannot prevent the accumulation of H₂O₂.³⁹

In order to get better insights of all the phenomena affecting free levels of aldehyde during wine oxidation, a different type of plot has been produced. For each aldehyde, wine and sampling point, the difference between the measured free aldehyde level and the estimated free aldehyde (for that particular wine at that particular molecular SO_2 concentration using the corresponding apparent formation constant) has been calculated and plotted versus the molecular level of SO_2 in the sample. Three of these plots are given as examples in Figure 3 (methional, decanal and 2-methylbutanal).

370 Figure 3a shows that the finding exemplified in Figure 2 about the coincidence between 371 measured and expected free aldehyde levels, extends to most wines and sampling points 372 with molecular SO₂ levels above 0.15 mg/L. Above this level, differences between 373 measured and expected values are close to 0, and only in few cases a decreasing trend is 374 observed. Below this region, however, the points scatter above and below 0 in Figure 375 3a. A point above 0 means that the free aldehyde found in wine is above expected, 376 suggesting *de novo* formation, while a point below 0 means that it is below expected, 377 suggesting oxidative degradation. The random pattern of scatter is an artifact, since each 378 wine shows in general a well-defined trend. For instance, the solid and dashed lines 379 represented in Figure 3a group the sampling points of two specific wines. In the case of 380 the wine represented by the dashed line, it is apparent that there is a strong *de novo* 381 formation of methional at low SO₂ levels, while in the wine represented by the solid

382 line, there is a neat degradation of methional and only at very low levels of molecular 383 SO₂ some *de novo* formation becomes apparent. For decanal, represented in Figure 3b, 384 and for which there is no known precursor in wine (natural 1-decanol levels are very 385 low), only the degradation pattern is observed, and becomes apparent in some wines at 386 levels of molecular SO₂ below 0.6 mg/L. The case of 2-methylbutanal, shown in Figure 387 3c, is rather the contrary, since *de novo* formation prevails over degradation. For this 388 compound, de novo formation took principally place also at low levels of molecular 389 SO₂, although in one particular white wine (solid line), *de novo* formation was observed 390 at levels between 0.4 and 0.5 mg/L molecular SO₂. Exactly the same trend was observed 391 for 2-methylbutanal, including the premature *de novo* formation for the same white 392 wine (Associated content Fig. S3a.). The plot for isovaleraldehyde showed also mostly 393 de novo formation and no degradation (Associated content Fig. S3b.), while for 394 phenylacetaldehyde de novo formation was evident only at very low SO₂ levels (less 395 than 0.1 mg/L), while some degradation is apparent at levels as high as 0.5 mg/L 396 (Associated content Fig. S3c.).

397 Modelling aldehyde formation rates (AFRs)

398 Data in Figures 2 and 3 reveal that the release of bound forms explains quite 399 satisfactorily the observed increases in free aldehyde as long as the levels of molecular 400 SO_2 are above 0.1-0.2 mg/L. The design of the present experiment, however, in which 401 the wines were forced to 5 consecutive oxygen-saturation cycles regardless of their 402 initial SO₂ content, does not make it possible to build satisfactory models for the 403 production of aldehydes, mostly *de novo*, at low SO₂ levels. Fortunately, we do have at hand data from a previous experiment⁶ in which wines were subject to a wide range of 404 405 levels of oxygen during months of storage. In such a case, aldehydes were found to 406 increase in an approximately linear way with the oxygen consumed. Such linear

407 relationships made it possible to determine the aldehyde formation rates (AFRs) of each wine.⁶ Those AFRs were found to be significantly correlated to the amino acid 408 409 precursor (in case of Strecker aldehydes) and combined SO₂ (in most cases), but were 410 not further modelled because at that moment it was not possible to correctly discern 411 between free and bound forms. However, with the apparent equilibrium constants determined in ref.¹⁹ and in the present study, it is possible to estimate for those wines 412 413 the bound fraction of each aldehyde present at the beginning of the experiment. With 414 such estimations at hand together with the chemical composition of the unoxidized 415 wines it has been possible to build some PLS models which give further insights on the 416 formation and release of Strecker aldehydes along wine oxidation. The models are 417 summarized in Table 4 and reveal a quite consistent structure in all cases. All models 418 bear positive correlation coefficients to the three different types of precursors: amino 419 acids, alcohols and the initial amount of aldehyde under bound forms, suggesting that in 420 fact the three phenomena concur to form or release these aldehydes. The models have a 421 relatively satisfactory prediction power and provide a preliminary estimation about the 422 contribution of each formation/release route to the AFR of each aldehyde. Attending to 423 such estimations, the amino acids would be the most relevant source of these compounds, in accordance with results from Grant-Preece et al.¹⁸ The alcohol would be 424 425 also important in the case of isovaleraldehyde, which comes from the major wine 426 alcohol, isoamyl alcohol, and would have null influence in the case of methional, which 427 comes from the minor methionol, in apparent disagreement with previous observations.⁴² The levels of bound aldehydes have a higher weight in the cases of 428 429 isovaleraldehyde and phenylacetaldehyde, those aldehydes whose alcohols were formed 430 at higher levels along the alcoholic fermentation. Nevertheless, apart from the fact that 431 release takes place in the first phase of wine oxidation, not much is yet known about the

432 mechanisms and time periods in which *de novo* formation of aldehydes takes place
433 along wine oxidation. These questions will have to be specifically addressed in future
434 research.

436 FUNDING SOURCES

This work has been funded by the Spanish Ministry of Economy and Competitiveness
(Project AGL2010 230183 and AGL2014-59840). M.B. has received a grant from the
Spanish FPI program and V.C. has received a grant from the Spanish FPU program.
Funding from Diputación General de Aragón (T53) and Fondo Social Europeo is
acknowledged.

442

443 ASSOCIATED CONTENT

444 Wines analyzed in the experiment including origin, age, varietal composition and some 445 basic compositional parameters. Free SO₂ (mg/L) and free (determined) and total 446 (estimated) forms of wine carbonyls (µg/L) in the 24 wines. Concentration ranges and 447 average concentrations in the initial wines of amino acids and alcohols potentially 448 precursors for oxidation aldehydes and some trace mineral elements with potential 449 catalytic activity upon the oxidation processes. Measured levels of different surrogates 450 as a function of wine molecular SO₂ content. Relationship between the inverse of the 451 molar concentration of bound forms (1/B) and molecular SO₂ for 144 samples (24 452 different commercial wines $+24 \times 5$ different oxidation states). Differences between the 453 measured and estimated free levels of some aldehydes along wine oxidation as a 454 function of the molecular SO₂ level of the wine.

456 **REFERENCES**

457 1. Ugliano, M. Oxygen Contribution to Wine Aroma Evolution during Bottle
458 Aging. J. Agric. Food Chem. 2013, 61, 6125-6136.

459 2. Chira, K.; Jourdes, M.; Teissedre, P. L. Cabernet sauvignon red wine 460 astringency quality control by tannin characterization and polymerization during 461 storage. *Eur. Food Res. Technol.* **2012**, *234*, 253-261.

462 3. Ribéreau-Gayon, P.; Pontallier, P.; Glories, Y. Some interpretations of colour
463 changes in young red wines during their conservation. J. Sci. Food Agric. 1983, 34,
464 505-516.

465 4. Wirth, J.; Morel-Salmi, C.; Souquet, J. M.; Dieval, J. B.; Aagaard, O.; Vidal, S.;
466 Fulcrand, H.; Cheynier, V. The impact of oxygen exposure before and after bottling on
467 the polyphenolic composition of red wines. *Food Chem.* 2010, *123*, 107-116.

468 5. Singleton, V. L.; Kramling, T. E. Browning of white wines and an accelerated 469 test for browning capacity. *Am. J. Enol. Vitic.* **1976**, *27*, 157-160.

Ferreira, V.; Bueno, M.; Franco-Luesma, E.; Cullere, L.; Fernandez-Zurbano, P.
Key Changes in Wine Aroma Active Compounds during Bottle Storage of Spanish Red
Wines under Different Oxygen Levels. *J. Agric. Food Chem.* 2014, *62*, 10015-10027.

Nikolantonaki, M.; Waterhouse, A. L. A Method To Quantify Quinone Reaction
Rates with Wine Relevant Nucleophiles: A Key to the Understanding of Oxidative Loss
of Varietal Thiols. *J. Agric. Food Chem.* 2012, *60*, 8484-8491.

8. Nikolantonaki, M.; Magiatis, P.; Waterhouse, A. L. Measuring protection of
aromatic wine thiols from oxidation by competitive reactions vs wine preservatives with
ortho-quinones. *Food Chem.* 2014, *163*, 61-67.

Ferreira, A. C. S.; de Pinho, P. G.; Rodrigues, P.; Hogg, T. Kinetics of oxidative
degradation of white wines and how they are affected by selected technological
parameters. J. Agric. Food Chem. 2002, 50, 5919-5924.

482 10. Escudero, A.; Cacho, J.; Ferreira, V. Isolation and identification of odorants
483 generated in wine during its oxidation: a gas chromatography-olfactometric study. *Eur.*484 *Food Res. Technol.* 2000, *211*, 105-110.

485 11. San-Juan, F.; Ferreira, V.; Cacho, J.; Escudero, A. Quality and Aromatic
486 Sensory Descriptors (Mainly Fresh and Dry Fruit Character) of Spanish Red Wines can
487 be Predicted from their Aroma-Active Chemical Composition. *J. Agric. Food Chem.*488 2011, 59, 7916-7924.

489 12. Cullere, L.; Cacho, J.; Ferreira, V. An assessment of the role played by some 490 oxidation-related aldehydes in wine aroma. *J. Agric. Food Chem.* **2007**, *55*, 876-881.

491 13. Vivar-Quintana, A. M.; Santos-Buelga, C.; Francia-Aricha, E.; Rivas-Gonzalo,
492 J. C. Formation of anthocyanin-derived pigments in experimental red wines. *Food Sci.*

492 J. C. Formation of anthocyanin-derived pigments in experimental red whes. *Food Sci.*493 *Technol. Int.* 1999, *5*, 347-352.

494 14. Baert, J. J.; De Clippeleer, J.; Hughes, P. S.; De Cooman, L.; Aerts, G. On the
495 Origin of Free and Bound Staling Aldehydes in Beer. J. Agric. Food Chem. 2012, 60,
496 11449-11472.

de Azevedo, L. C.; Reis, M. M.; Motta, L. F.; da Rocha, G. O.; Silva, L. A.; de
Andrade, J. B. Evaluation of the formation and stability of hydroxyalkylsulfonic acids
in wines. J. Agric. Food Chem. 2007, 55, 8670-8680.

500 16. Culleré, L.; Ferreira, V.; Cacho, J. Analysis, occurrence and potential sensory 501 significance of aliphatic aldehydes in white wines. *Food Chem.* **2011**, *127*, 1397-1403.

502 17. Zapata, J.; Lopez, R.; Herrero, P.; Ferreira, V. Multiple automated headspace in-503 tube extraction for the accurate analysis of relevant wine aroma compounds and for the 504 estimation of their relative liquid-gas transfer rates. *J. Chromatogr. A.* **2012**, *1266*, 1-9. 505 18. Grant-Preece, P.; Fang, H. J.; Schmidtke, L. M.; Clark, A. C. Sensorially
506 important aldehyde production from amino acids in model wine systems: Impact of
507 ascorbic acid, erythorbic acid, glutathione and sulphur dioxide. *Food Chem.* 2013, 141,
508 304-312.

509 19. Bueno, M.; Zapata, J.; Ferreira, V. Simultaneous determination of free and 510 bonded forms of odor-active carbonyls in wine using a headspace solid phase 511 microextraction strategy. *J. Chromatogr. A.* **2014**, *1369*, 33-42.

512 20. Dimkou, E.; Ugliano, M.; Dieval, J. B.; Vidal, S.; Aagaard, O.; Rauhut, D.; 513 Jung, R. Impact of Headspace Oxygen and Closure on Sulfur Dioxide, Color, and 514 Hydrogen Sulfide Levels in a Riesling Wine. *Am. J. Enol. Vitic.* **2011**, *62*, 261-269.

- 515 21. Lopes, P.; Silva, M. A.; Pons, A.; Tominaga, T.; Lavigne, V.; Saucier, C.; 516 Darriet, P.; Teissedre, P. L.; Dubourdieu, D. Impact of Oxygen Dissolved at Bottling 517 and Transmitted through Closures on the Composition and Sensory Properties of a 518 Sauvignon Blanc Wine during Bottle Storage. *J. Agric. Food Chem.* **2009**, *57*, 10261-519 10270.
- 520 22. Godden, P.; Lattey, K.; Francis, L.; Gishen, M.; Cowey, G.; Holdstock, M.;
 521 Robinson, E.; Waters, E.; Skouroumounis, G.; Sefton, M.; Capone, D.; Kwiatkowski,
 522 M.; Field, J.; Coulter, A.; D'Costa, N.; Bramley, B. Towards offering wine to the
 523 consumer in optimal condition-the wine, the closures and other packaging variables: a
 524 review of AWRI research examining the changes that occur in wine after bottling. *Aust.*525 N. Z. Wine Ind. J. 2005, 20, 20-30.
- 526 23. O'Brien, V.; Francis, L.; Osidacz, P. Packaging choices affect consumer 527 enjoyment of wine. *Aust. N. Z. Wine Ind. J.* **2009**, *24*, 48-54.
- 528 24. Gonzalez-Hernandez, M.; Avizcuri-Inac, J. M.; Dizy, M.; Fernandez-Zurbano, 529 P. Ultra performance liquid chromatography coupled to ultraviolet-vis and mass 530 spectrometry detector for screening of organic acids and polyphenols in red wine. In 531 *High-performance liquid chromatography (HPLC): Principles, practices and* 532 *procedures*, Zuo, Y., Ed. Nova Science: New York, 2014.
- 533 25. Gonzalo-Diago, A.; Dizy, M.; Fernandez-Zurbano, P. Taste and Mouthfeel 534 Properties of Red Wines Proanthocyanidins and Their Relation to the Chemical 535 Composition. *J. Agric. Food Chem.* **2013**, *61*, 8861-8870.
- 536 26. Gonzalvez, A.; Armenta, S.; Pastor, A.; de la Guardia, M. Searching the most 537 appropriate sample pretreatment for the elemental analysis of wines by inductively 538 coupled plasma-based techniques. *J. Agric. Food Chem.* **2008**, *56*, 4943-4954.
- 539 27. Hernandez-Orte, P.; Ibarz, M. J.; Cacho, J.; Ferreira, V. Amino acid
 540 determination in grape juices and wines by HPLC using a modification of the 6541 aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) method. *Chromatographia*.
 542 2003, 58, 29-35.
- 543 28. OIV OIV-MA-AS323-04A Sulfur dioxide. In *Sulfur dioxide (Resolution Oeno*544 377/2009), Compendium of International Methods of Analysis: 2009.
- 545 29. Ortega, C.; Lopez, R.; Cacho, J.; Ferreira, V. Fast analysis of important wine
 546 volatile compounds Development and validation of a new method based on gas
 547 chromatographic-flame ionisation detection analysis of dichloromethane microextracts.
 548 *J. Chromatogr. A.* 2001, *923*, 205-214.
- 30. Rivero-Perez, M. D.; Muniz, P.; Gonzalez-Sanjose, M. L. Antioxidant profile of
 red wines evaluated by total antioxidant capacity, scavenger activity, and biomarkers of
 oxidative stress methodologies. *J. Agric. Food Chem.* 2007, 55, 5476-5483.
- Saenz-Navajas, M.-P.; Avizcuri, J.-M.; Ferreira, V.; Fernandez-Zurbano, P.
 Insights on the chemical basis of the astringency of Spanish red wines. *Food Chem.* **2012**, *134*, 1484-1493.

555 32. Saenz-Navajas, M.-P.; Echavarri, F.; Ferreira, V.; Fernandez-Zurbano, P. 556 Pigment composition and color parameters of commercial Spanish red wine samples: 557 linkage to quality perception. *Eur. Food Res. Technol.* **2011**, *232*, 877-887.

558 33. Singleton, V. L.; Orthofer, R.; Lamuela-Raventós, R. M. Analysis of total 559 phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu 560 reagent. In *Methods in Enzymology*, Academic Press: 1999; Vol. Volume 299, pp 152-561 178.

562 34. Sun, B. S.; Leandro, C.; Ricardo-da-Silva, J. M.; Spranger, I. Separation of 563 grape and wine proanthocyanidins according to their degree of polymerization. *J. Agric.* 564 *Food Chem.* **1998**, *46*, 1390-1396.

565 35. Herrero, P.; López, R.; Cacho, J.; Ferreira, V. Re-evaluación y nueva propuesta
566 de calibración de un método para el análisis de volátiles mayoritarios del vino por
567 micro-extracción líquido-líquido. In *Actualizaciones en investigación vitivinícola*,
568 Martinez Encuadernaciones A.G., S.L.: Jerez de la Frontera (Cádiz), 2011; pp 379-382.

569 36. Daniel, M. A.; Elsey, G. M.; Capone, D. L.; Perkins, M. V.; Sefton, M. A. Fate 570 of damascenone in wine: The role of SO2. *J. Agric. Food Chem.* **2004**, *52*, 8127-8131.

571 37. Jornvall, H.; Persson, B.; Jeffery, J. Characteristics of alcohol polyol
572 dehydrogenases - The zinc-containing long-chain alcohol dehydrogenases. *Eur. J.*573 *Biochem.* 1987, *167*, 195-201.

574 38. Leskovac, V.; Trivic, S.; Pericin, D. The three zinc-containing alcohol 575 dehydrogenases from baker's yeast, Saccharomyces cerevisiae. *FEMS Yeast Res.* **2002**, 576 2, 481-494.

577 39. Elias, R. J.; Waterhouse, A. L. Controlling the Fenton Reaction in Wine. J. 578 Agric. Food Chem. 2010, 58, 1699-1707.

579 40. Danilewicz, J. C. Reactions Involving Iron in Mediating Catechol Oxidation in
580 Model Wine. *Am. J. Enol. Vitic.* 2013, 64, 316-324.

581 41. Burrough, L. F.; Sparks, A. H. Sulfite-binding power of wine and ciders. 1.
582 Equilibrium constants for dissociation of carbonyl bisulfite compounds. J. Sci. Food
583 Agric. 1973, 24, 187-198.

- 584 42. Escudero, A.; Hernandez-Orte, P.; Cacho, J.; Ferreira, V. Clues about the role of
 585 methional as character impact odorant of some oxidized wines. *J. Agric. Food Chem.*586 2000, 48, 4268-4272.
- 43. Peinado, R. A.; Moreno, J.; Bueno, J. E.; Moreno, J. A.; Mauricio, J. C. Comparative study of aromatic compounds in two young white wines subjected to prefermentative cryomaceration. *Food Chem.* **2004**, *84*, 585-590.

590 44. Guth, H. Quantitation and Sensory Studies of Character Impact Odorants of 591 Different White Wine Varieties. J. Agric. Food Chem. **1997**, 45, 3027-3032.

592 45. Buttery, R. G.; Ling, L. C. Volatile flavor components of corn tortillas and 593 related products. *J. Agric. Food Chem.* **1995**, *43*, 1878-1882.

594 46. Ferreira, V.; Lopez, R.; Cacho, J. F. Quantitative determination of the odorants
595 of young red wines from different grape varieties. *J. Sci. Food Agric.* 2000, *80*, 1659596 1667.

597 47. Etievant, P. X. Wine. In *Volatile compounds of food and beverages*, Maarse, H.,
598 Ed. Marcel Dekker: New York, 1991; pp 483-546.

599 48. Lopez, R.; Aznar, M.; Cacho, J.; Ferreira, V. Determination of minor and trace 600 volatile compounds in wine by solid-phase extraction and gas chromatography with 601 mass spectrometric detection. *J. Chromatogr. A.* **2002**, *966*, 167-177.

FIGURE CAPTIONS

Figure 1. Measured levels of free 3,5,5-trimethylhexanal as a function of wine molecular SO₂ content. Solid and dashed lines give the expected free level estimated using the 3,5,5-trimethylhexanal-SO₂ adduct dissociation constant measured in synthetic (dashed) and real (solid) wines. The zoomed area gives the details of two wines in which a strong degradation of the surrogate at low molecular SO₂ levels is observed.

Figure 2. Levels of methional of a red wine measured during its oxidation as a function of its molecular SO_2 content. Dashed line represents the estimated levels of total methional of the unoxidized wine sample. Dotted line represents the free levels estimated using the buthional-SO₂ adduct dissociation constant measured in real wine.

Figure 3. Differences between the measured and estimated free levels of some aldehydes during wine oxidation as a function of the molecular SO₂ level of the wine. The data from the 24 wines after 5 different oxidation levels are represented: (a) methional, lines group points from specific wines; (b) decanal; (c) 2-methylbutanal. For methional and 2-methylbutanal, the apparent formation constant (K_a) for the corresponding surrogate calculated in real wine was taken. In case of decanal the K_a reported in synthetic wine by de Azevedo et al. 2007 was used.