
The CIAO Multi-paradigm Compiler and System:
A Progress Report

M. Hermenegildo, F. Bueno, M. García de la Banda, and G. Puebla

C o m p u t e r Science D e p a r t m e n t
Technical Universi ty of Madr id

{herme,bueno,maria,german}@dia.f i.upm.es

E x t e n d e d A b s t r a c t

1 I n t r o d u c t i o n

In [HtCg93, HtCg94] we discussed several methodological aspects regarding the design and
efficient parallel execution of logic programming systems and concurrent logic programming
systems, and their generalization to constraint programming. We proposed a novel view of
these systems, based on a particular definition of parallelism and argued that , under this view,
a large number of the actual systems and models can be explained (and implemented) through
the application, at different levéis of granularity, of only a few basic principies, which include
determinism, non-failure, independence (also referred to as stability), task granularity, etc.
In identifying these fundamental principies, we also argued for a separation between those
principies which have to do with the computation rule (i.e., to performing the least work
possible) and those that are directly related to parallelism (i.e., to performing the such work
in the smallest amount of time by splitting it among several processors). Finally, and basing
our discussion on the convergence of concepts that this view brought, we sketched the design
of the CIAO (Concurrent, Independence-based And /Or parallel) system, a platform for the
implementation of several parallel constraint logic programming source languages and models
based on a common, generic abstract machine and an intermedíate kernel language.

The purpose of this paper is to report on recent progress in the implementation of the
CIAO system itself, with special emphasis on the capabilities of the compiler and the tech-
niques used for supporting such capabilities.

2 T h e C I A O S y s t e m

CIAO is a multi-paradigm compiler, run-time, and program development system which is
aimed at providing efficient implementations of a range of LP, CLP, and CC programming
languages, on sequential and multiprocessor machines. It also supports distributed execu­
tion. The CIAO system is generic in the sense that the different source-level languages are
supported by compilation via source to source transformations into a comparatively simple
kernel language (which is also the native CIAO language). The analysis and transformation
techniques used in this process are based on novel semantic modeling of CLP and CC program

behavior and on the exploitation of optimization principies, such as independence/stability,
and techniques, such as specialization, abstract executability, etc.

The CIAO system can be used quite effectively for developing applications. However,
one of its main objectives is to be useful as an experimentation and evaluation platform for
the analysis and transformation techniques being developed, as well as for the underlying
abstract machine.

More concretely, the design of the CIAO system is based on a series of ideas, which
include:

• Support for Múltiple Models and Paradigms: As mentioned above, the system supports a
range of LP, CLP, and CC programming languages. It also support several computation
rules, including standard left-to-right SLD resolution and the determínate-first principie
(as in the Andorra model [SCWY90, dMSC93]).

• Support for Distributed Execution: In the belief that distributed systems are one of the
target applications of computational logic systems (not so much for performance but
for the functionality of accessing remote resources such as knowledge bases) the CIAO
system includes extensive distributed execution capabilities.

• Implementation via Compilation into a Simple Kernel Language: This is based on the
belief that médium to high performance implementations of many LP systems can be
obtained in this way, with the advantages then that optimizations can be performed
via source to source transformations and the low level machinery can be kept minimal.
While performance may be limited somewhat in the approach, reasonable levéis can
be obtained, specially given the experimental nature of the intended system. Opti­
mizations, which include parallelization, reduction of concurrency and synchronization,
reordering of goals, code simplification, specialization, etc., are performed via source
to source transformation. Most analysis phases are performed at the kernel language
level, so that the same analyzer can be used for several models. For example, a single
analyzer framework can handle Prolog programs with delay and concurrent (constraint)
programs.

• Explicit Control in the Kernel Language: Explicit control in the kernel language makes
it possible to perform many control-related optimizations at the source level. Such
explicit control is performed via operators which include:

— Sequential, Parallel, and Concurrent Operators: the presence of both sequential-
ity (" , ") , concurrency ("&/1") and parallelism ("&/2", "&>/2", "&</ l") opera­
tors allows performing optimizations such as parallelization (task creation based
on dependencies), partitioning and schedule analysis (task coalescence based on
dependencies), and granularity control (task coalescence based on task size con-
siderations) as source to source transformations. The parallel operators support
full backtracking. They assume independence among goals. Communication of
bindings is not guaranteed until the join. No variable locking is performed. The
concurrency operator allows concurrent programming in the style of CC languages.
Variable communication (and locking) is performed. Backtracking is limited in the
sense that no "active shared binding" can be undone via backtracking. An active
shared binding is a binding to a variable that is shared among active processes.

— Explicit And-Fairness Operator: based on the observation that and-fairness in
concurrent systems is still expensive to implement, a fair concurrency operator
("&&/1") is introduced which explicitly requests the (emcient) association of an
operating system thread to a goal.

This also leaves open the possibility of implementing a fair source language that
compiles efficiently into these operators (perhaps via an analysis which can deter­
mine the program points where fairness is really needed - to ensure, for example,
termination).

— Explicit Synchronization: explicit synchronization is handled in the kernel lan­
guage by means of "wait/1" and "ask/1" operators (the latter as in concurrent
constraint programming, the former as in &-Prolog), augmented with some meta-
tests on the variables (such as ground/1 or nonvar / l) .

— Explicit Placement Operator: an explicit placement operator ("O") allows control of
task placement in distributed execution. These and other primitives for controlling
distributed execution, and to implement the concept of active modules or active
objects, are described in [CH95].

• Generic Abstract Machine: a comparatively simple abstract machine directly supports
the kernel language. The design of the abstract machine is based on the belief that there
is much in common at the abstract machine level among many of the LP, CLP, and CC
models, and thus builds strongly on the parallelism and concurrency capabilities of the
PWAM/&-Prolog abstract machine [Her86, HG91] and recent work on extending its ca­
pabilities and efficiency [PGT95a, PGH95, PGT + 95b] . The abstract machine includes
native support for attributed variables [Hol92, Hou90, Neu90] which are used exten-
sively in the implement at ion of constraint solvers (as in other systems such as Eclipse
[Eur93] and SICStus 3 [Swe95]) and in supporting communication among concurrent
tasks [HCC95]. While the current abstract machine supports only ("dependent" and
"independent") and-parallelism, it is expected that combination with or-parallelism will
be possible by applying the techniques developed in [GC92, GHPC94, GSCYH91].

3 The CIAO Compiler

The CIAO compiler provides the required support for the different programming paradigms
and their optimization. As mentioned before, it is strongly based on program analysis and
transformation. The compilation process can be viewed as a translation process from the
input language to (kernel) CIAO. The system is able to transíate the input source, automat-
ically extracting parallelism, compiling synchronization, and optimizing the final program.
Optimizations include simplifying the code to avoid run-time tests and suspensions, and spe-
cializing predicates in order to genérate much simpler and emcient code in the back end.
Program analysis is instrumental in all the optimizations.

This compilation process is depicted in Figure 1, which illustrates the inputs and outputs,
as well as the compilation options, which are selected via either menus, or program flags. The
compilation process is structured into several steps. First, a module in a given input language
is translated into the kernel language. Then, analysis is performed if required to support the
rest of the compilation process. In some cases some degree of analysis may also be performed
in the translation step to aid in the translation. After analysis, the program is optionally
annotated for parallel execution, simplified and specialized.

Figure 1: CIAO Compiler

The output can then be loaded for execution on the abstract machine. As an alternative,
and using the transformational approach, most of the capability of the system (including
distributed execution) is also supported (with sometimes somewhat lower efficiency) on any
Prolog which supports delay declarations and attributed variables (e.g., SICStus Prolog Ver­
sión 3 [Swe95]). In that sense, the CIAO compiler can also be viewed as a library package
for Prolog systems with these capabilities.

The compiler steps and options are discussed in the following sections. Given the space
limitations the aim is to offer a general description and provide references for publications or
technical reports where the techniques used are described. An extended description of the
capabilities of the compiler can be found in the User's Manual [Bue95].

3.1 Source Languages Supported and Transformations Performed

3.1.1 INPUT LANGUAGES AND COMPUTATION RULES The compiler can deal with
several languages and computation rules simultaneously and perform several translations
among them. Currently, in addition to (kernel) CIAO full syntax (backwards compatible
with Prolog, plus the specific CIAO primitives), also concurrent logic programming syntax,
including (fíat) guards, is supported, as well as the basic Andorra model. Also, the constraint
system over which the program is defined can be declared. Currently, the system supports

M o d e
c iao (h)
c iao (q)
c i a o (r)
andorra(h)
andorra(q)
andorra(r)
cc(h)
cc(q)
c c (r)

Language
Prolog + CIAO primitives
Prolog + CIAO primitives
Prolog + CIAO primitives

Prolog
Prolog
Prolog

Basic CC
Basic CC
Basic CC

C o m p u t a t i o n Rule
L-to-R/concurrent
L-to-R/concurrent
L-to-R/concurrent

Basic Andorra
Basic Andorra
Basic Andorra

Concurrent
Concurrent
Concurrent

Constr . D o m a i n
Herbrand
Rationals
Reals

Herbrand
Rationals
Reals

Herbrand
Rationals
Reals

Table 1: Languages and Execution Models Supported

those of Prolog, CLP(R), and CLP(Q). The current set of choices is illustrated in Table 1.

The Compiler determines the language and computation rule under which to interpret
a given program as follows. The default is the CIAO kernel language (which includes full
Prolog), on the Herbrand domain. The mode of the system can be changed by typing at the
top level the commands in the "Mode" column in Table 1. Programs read from then on will
be interpreted in the new mode. Alternatively, the programs themselves can be annotated
directly. This is done in the module declaration. One more argument is available in module
declarations where the mode (again, one of those in the "Mode" column in Table 1) is
specified.

Program transformations bridge the semantic gaps between the different programming
paradigms supported. The methods used for supporting the (Basic) Andorra model are
described in [BDGH95]. The methods used for supporting CC languages are an extensión of
those of [DGB94, Deb93] and are described in [BH95c].

3.2 Analys i s

The compiler includes a number of analysis modules, which can analyze programs over the
Herbrand or some constraint domains. In addition, analysis of dynamically scheduled pro­
grams is provided in order to support the concurrent models. Note that , thanks to the
transformational approach, only two frameworks are used (one for simple, left-to-right exe­
cution and another for the case when there are dynamically scheduled goals).

Local analysis of program clauses is quite straightforward but sometimes useful in some
optimizations, as in program parallelization [BGH94]. Global analysis is performed in CIAO
in the context of abstract interpretation [CC77, Deb92, CC92]. The underlying framework
of analysis is that of PLAI [HWD92, MH90, MH92]. PLAI implements a generic, top-down
driven1 abstract interpreter. It allows easily plugging into it several abstract domains. PLAI
also incorporates incremental analysis [HMPS95] in order to deal with large programs and is
capable of analyzing full languages (in particular, full s tandard Prolog [BCHP95, CRH94]).
The CIAO analyzer incorporates the following domains, which are briefly explained below:
SH, SH+FR, ASuh, SH+ASub, and SH+FR+ASuh, which are used in logic programming,
and Deí] Fr, Fd, which can be used either in logic or constraint logic programming, and LSign,

1PLAI now also supports goal-independent analysis [CGBH94] and bottom-up analysis.

which is more specific to constraint logic programming.2 Analysis of dynamically scheduled
languages can be carried out with the SH+FR and LSign domains.

3.2.1 H E R B R A N D For the analysis of (classical) logic programs (over the Herbrand do-
main) the CIAO compiler includes a number of traditional domains proposed in the literature
for capturing properties such as variable groundness, freeness, sharing, and linearity informa­
tion. This includes the set sharing SH [JL89, MH89], sharing and freeness S H + F R [MH91],
and pair sharing ASub [Son86] domains. Combining the SH and SH+FR domains with ASub
is also supported, resulting in the SH+ASub and SH+FR+ASub domains. The combination
is done in such a way that the original domains and operations of the analyzer over them
are re-used, instead of redefining the domains for the combination [CC79, CMB+93] . Two
other domains, a modified versión of Path sharing [KS95] and Aeqns (abstract equations)
[MSJB95] are currently being incorporated to the system.

3.2.2 C O N S T R A I N T P R O G R A M M I N G The definiteness abstraction Def [GH93, Gar94]

derives definite interaction between constraints. More precisely, the analysis determines (1)
which variables are definite, i.e. constrained to a unique valué, with respect to the constraint
store in which they occur, and (2) definite dependencies between program variables. These
dependencies are used to perform accurate definiteness propagation and are also useful in
their own right to perform several program optimizations.

The freeness abstraction Fr [DJBC93, DJ94, Dum94] derives possible interaction between
constraints. This is different from freeness in the SH+FR domain. More precisely, the analysis
determines (1) which variables act as degrees of freedom with respect to the satisfiability of
the constraint store in which they occur, and (2) possible dependencies between program
variables. These dependencies are used to perform accurate non-freeness propagation and
are also useful in their own right to perform program optimizations.

A combination of the Def and Fr analyses derives both definiteness and freeness informa­
tion at the same time. It is incorporated in the compiler as the analyzer Fd. The information
at each program point consists of: the set of ground or definite variables, the set of free
variables, the set of definite dependencies, and the set of possible dependencies.

An additional domain supported is LSign [MS94]. This domain is aimed at inferring
accurate information about possible interaction between linear arithmetic equalities and in-
equalities. The key idea is to abstract the actual coefficients and constants in constraints by
their "sign". A preliminary implementation of this domain shows very promising accuracy,
although at a cost in efficiency.

The information produced using these domains is instrumental in performing optimiza­
tions ranging from constraint/goal reordering to program parallelization.

3.2.3 DYNAMICALLY S C H E D U L E D P R O G R A M S CIAO also includes a versión of the
PLAI framework which is capable of accurately analyzing (constraint) programs with dy-
namic scheduling (e.g., including delay declarations [eA82, Car87]). Being able to analyze
constraint languages with dynamic scheduling also allows analyzing CC languages with an-
gelic nondeterminism.3 Initial studies showed that accurate analysis in such programs is
possible [MGH94], although this technique involves relatively large cost in analysis time.

2Some of these domains have been implemented by other users of the PLAI system, notably the K. U.
Leuven, Monash University, and the U. of Melbourne.

3This is a kind of nondeterminism which does not give rise to an arbitrary choice when applying a search
rule.

The analysis integrated into the CIAO compiler uses a novel method which improves on the
previous one by increasing the efficiency without significant loss of accuracy [GMS95]. The
approach is based on approximating the delayed atoms by a closure operator. Experimental
results show that this approach allows more efficient analysis with similar accuracy.

Another, direct method for analysis of CC programs has been developed and is currently
being integrated into the compiler. As in the method mentioned above, this one is based
on the observation that most implementations of the concurrent paradigm can be viewed as
a computation which proceeds with a fixed, sequential scheduling rule but in which some
goals suspend and their execution is postponed until some condition wakes them. Extending
previous work of Debray [DGB94, Deb93], we show how, for certain properties, it is possible
to extend existing analysis technology for the underlying fixed computation rule in order to
deal with such programs [BH95b]. In particular, this idea has been applied using as starting
point the original framework for the analysis of sequential programs. The resulting analysis
can deal with programs where concurrency is governed by the Andorra model as well as
standard CC models. The advantage with respect to the the method above is lower analysis
time, in exchange for a certain loss of accuracy.

3.3 Paral le l izat ion

The information inferred during the analysis phase is used for independence detection, which
is the core of the parallelization process [BGH94, GBH95]. The compile-time parallelization
module is currently aimed at uncovering goal-level, restricted (i.e., fork and join), indepen­
dent and-parallelism (IAP). Independence has the very desirable properties of correct and
efficient execution w.r.t. s tandard sequential execution of Prolog or CLP. In the context of
LP, parallelization is performed based on the well-understood concepts of strict and non-strict
independence [HR95], using the information provided by the abstract domains. While the
notions of independence used in LP are not directly applicable to CLP, specific definitions for
CLP (and constraint programming with dynamic scheduling) have been recently proposed
[GHM93, Gar94] and they have been incorporated in the CIAO compiler in order to parallelize
CLP and CC programs [GHM95]. Additionally, the compiler has side-effect and granularity
analyzers (not depicted in Figure 1) which infer information which can yield the sequen-
tialization of goals (even when they are independent) based on efficiency or maintenance of
observable behavior.

The actual automatic parallelization of the source program is performed in CIAO during
compilation of the program by the so called annotation algorithms. The algorithms currently
implemented are: mel, cdg, udg [Mut91, Bue94], and ur lp [CH94]. To our knowledge, the
CIAO system is the first one to perform automatic compile-time (And-)parallelization of CLP
programs [GBH95].

3.4 Opt imiza t ion

The CIAO compiler performs several forms of code optimization by means of source to source
transformations. The information obtained during the analysis phase is not only useful in
automatic program parallelization, but also in this program specialization and simplincation
phase.

The CIAO compiler can optimize programs to different degrees, as indicated by the user.
It can just simplify the program, where simplincation amounts to reducing literals and pred-
icates which are known to always succeed, fail, or lead to error. This can speed up the

program at run-time, and also be useful to detect errors at compile-time. It can also spe-
cialize the program using the versions generated during analysis [PH95a]. This may involve
generating different versions of a predicate for different abstract cali patterns, thus increas-
ing the program size whenever this allows more optimizations. In order to keep the size of
the specialized program as reduced as possible, the number of versions of each predicate is
minimized attaining the same results as with Winsborough's algorithm [Win92].

As well as handling sequential code, the optimization module of the CIAO compiler con-
tains what we believe is the first automatic optimizer for languages with dynamic scheduling
[PH95b]. The potential benefits of the optimization of this type of programs were already
shown in [MGH94], but they can now be obtained automatically. These kinds of optimizations
include simplification and elimination of suspensión conditions and elimination of concurrency
primitives (sequentialization).

3.5 O u t p u t

The CIAO compiler produces several forms of output . It is possible to obtain the results
of each of the intermedíate compilation phases. This allows visualizing and affecting the
transformation, analysis, parallelization, and optimization processes. Because of the source
to source nature of the compiler, this output is always a (possibly annotated) kernel CIAO
program.

The back end of the compiler takes the result of the previous program transformations
and generates a number of final output formats. Normally, the result of the compiler is
intended for the CIAO/&-Prolog abstract machine. Output possibilities are then byte-code
(" .q l ") files, stand-alone executables, and incore compilation (when the compiler is running
inside the system rather than as a stand-alone application). As mentioned before, and as an
alternative output, most of the capability of the system can also be handled by any Prolog
which supports delay declarations and at t r ibuted variables. Alternatively, also AKL [JH91]
can be used as a target, using the techniques described in [BH95a].

4 F u t u r e W o r k

We have briefly described the current status of the CIAO system. The current main ob-
jective of the system is to be an experimentation and evaluation vehicle for programming
constructs and optimization and implement at ion techniques for the programming paradigms
of LP, CLP, and CC, and their combinations. The current versión of the system is available
for experimentation (please contact the authors; further information can be obtained from
h t t p : / / w w w . d i a . f i . u p m . e s) .

We are continuing improving the system. Additionally, we are developing pilot applica-
tions with the system which should provide valuable feedback regarding its capabilities.

Much work remains to be done in several áreas. While the CIAO system illustrates that
analysis and optimization of concurrent programs is possible, much work remains in improving
the efficiency and accuracy of the analysis and in improving the performance gains obtained
with the resulting optimizations. As mentioned in Section 3.3, the automatic parallelization
currently performed in the CIAO system is at the goal level. However, it is possible to
parallelize at finer granularity levéis, thus obtaining greater degrees of parallelism. The
concept of local independence [MRB+94, BHMR94] can be used for this purpose. Although
some promising progress has been made in this direction [HCC95], it remains as future work
to implement a system fully capable of emciently exploiting this very fine grained level of

http://www.dia.fi.upm.es

parallelism.

Granularity control is a very important issue in both parallelization of sequential programs
and sequentialization of concurrent ones. As mentioned in Section 3.3, the CIAO compiler
already has some granularity control capabilities [DLH90, KS90, LHD94, DLHL94, LH95],
but much work remains to be done in this very important área.

While our work in detection of parallelism in the CIAO compiler concentrates on compile-
time detection of parallelism, run-time detection also needs to be explored. Significant
progress has been made in this área by models and systems such as DDAS [She92], Andorra-I,
and AKL.

Finally, there remains the issue of what is the ideal, future source language for
LP/CLP/CC. CIAO sidesteps this issue by attempting to support several languages (includ-
ing those that combine several paradigms). This allows concentrating on the implementation
issues and developing basic techniques for analysis and optimization that, in the belief that
the underlying principies are quite common to the approaches being explored, will hopefully
be applicable to future languages. However, the issue of the next generation language is
certainly important. Much promising work has been done in this direction in the design of
the AKL [JH90] and OZ [Smo94] languages. In fact, interestingly, the kernel CIAO language
also offers a (simplistic, but effective) solution to the problem, which is backwards compatible
with Prolog and CLP.

References

[BCHP95] F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Data-flow Analysis of
Standard Prolog Programs. In ICLP95 WS on Abstract Interpretation of Logic
Languages, Japan, June 1995.

[BDGH95] F. Bueno, S. Debray, M. García de la Banda, and M. Hermenegildo.
Transformation-based Implementation and Optimization of Programs Exploit-
ing the Basic Andorra Model. Technical Report CLIP11/95.0, Facultad de In­
formática, UPM, May 1995.

[BGH94] F. Bueno, M. García de la Banda, and M. Hermenegildo. Effectiveness of Global
Analysis in Strict Independence-Based Automatic Program Parallelization. In
International Symposium on Logic Programming, pages 320-336. MIT Press,
November 1994.

[BH95a] F. Bueno and M. Hermenegildo. An Automatic Translation Sclieme from CLP
to AKL. Technical Report CLIP7/95.0, Facultad de Informática, UPM, June
1995.

[BH95b] F. Bueno and M. Hermenegildo. Analysis of Concurrent Constraint Logic Pro-
grams with a Fixed Scheduling Rule. In ICLP95 WS on Abstract Interpretation
of Logic Languages, Japan, June 1995.

[BH95c] F. Bueno and M. Hermenegildo. Compiling Concurrency into a Sequential Logic
Language. Technical Report CLIP15/95.0, Facultad de Informática, UPM, June
1995.

[BHMR94] F. Bueno, M. Hermenegildo, U. Montanari, and F. Rossi. From Eventual to
Atomic and Locally Atomic CC Programs: A Concurrent Semantics. In Fourth
International Conference on Algebraic and Logic Programming, number 850 in
LNCS, pages 114-132. Springer-Verlag, September 1994.

[Bue94] Francisco J. Bueno Carrillo. Automatic Optimisation and Parallelisation of
Logic Programs through Program Transformation. PhD thesis, Universidad
Politécnica de Madrid (UPM), October 1994.

[Bue95] F. Bueno. The CIAO Multiparadigm Compiler: A User's Manual. Technical
Report CLIP8/95.0, Facultad de Informática, UPM, June 1995.

[Car87] M. Carlsson. Freeze, Indexing, and Other Implementation Issues in the Wam. In
Fourth International Conference on Logic Programming, pages 40-58. University
of Melbourne, MIT Press, May 1987.

[CC77] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints.
In Fourth ACM Symposium on Principies of Programming Languages, pages
238-252, 1977.

[CC79] P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks.
In Sixth ACM Symposium on Principies of Programming Languages, pages 269-
282, San Antonio, Texas, 1979.

[CC92] P. Cousot and R. Cousot. Abstract Interpretation and Application to Logic
Programs. Journal of Logic Programming, 13(2 and 3):103-179, July 1992.

[CGBH94] M. Codish, M. García de la Banda, M. Bruynooghe, and M. Hermenegildo.
Goal Dependent vs Goal Independent Analysis of Logic Programs. In F. Pfen-
ning, editor, Fifth International Conference on Logic Programming and Auto-
mated Reasoning, number 822 in LNAI, pages 305-320, Kiev, Ukraine, July
1994. Springer-Verlag.

[CH94] D. Cabeza and M. Hermenegildo. Extracting Non-strict Independent And-
parallelism Using Sharing and Freeness Information. In Springer-Verlag, edi­
tor, 1994 International Static Analysis Symposium, number 864 in LNCS, pages
297-313, Namur, Belgium, September 1994.

[CH95] D. Cabeza and M. Hermenegildo. Distributed Concurrent Constraint Execu-
tion in the CIAO System. In Proc. of the 1995 COMPULOG-NET Workshop
Parallelism and Implementation Technologies, Utrecht, NL, September 1995. U.
Utrecht / T.U. Madrid.

[CMB+93] M. Codish, A. Mulkers, M. Bruynooghe, M. García de la Banda, and
M. Hermenegildo. Improving Abstract Interpretations by Combining Domains.
In Proc. ACM SIGPLAN Symposium on Partial Evaluation and Semantics
Based Program Manipulation, pages 194-206. ACM, June 1993.

[CRH94] B. Le Charlier, S. Rossi, and P. Van Hentenryck. An Abstract Interpretation
Framework Which Accurately Handles Prolog Search-Rule and the Cut. In
International Symposium on Logic Programming, pages 157-171. MIT Press,
November 1994.

[Deb92] S. Debray, editor. Journal of Logic Programming, Special Issue: Abstract Inter­
pretation, volume 13(1-2). North-Holland, July 1992.

[Deb93] S. K. Debray. Implementing logic programming systems: The quiche-eating
approach. In ICLP '93 Workshop on Practical Implementations and Systems
Experience in Logic Programming, Budapest, Hungary, June 1993.

[DGB94] S. Debray, D. Gudeman, and Peter Bigot. Detection and Optimization of
Suspensión-free Logic Programs. In 1994 International Symposium on Logic
Programming, pages 487-501. MIT Press, November 1994.

[DJ94] V. Dumortier and G. Janssens. Towards a practical full mode inference system
for CLP(H,N). In Pascal Van Hentenryck, editor, Proceedings of the llth In­
ternational Conference on Logic Programming, pages 569-583, Italy, June 1994.
MIT Press.

[DJBC93] V. Dumortier, G. Janssens, M. Bruynooghe, and M. Codish. Freeness analysis in
the presence of numerical constraints. In David S. Warren, editor, Proceedings
of the lOth International Conference on Logic Programming, pages 100-115,
Budapest, Hungary, June 1993. MIT Press.

[DLH90] S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in
Logic Programs. In Proc. of the 1990 ACM Conf. on Programming Language
Design and Implementation, pages 174-188. ACM Press, June 1990.

[DLHL94] S.K. Debray, P. López García, M. Hermenegildo, and N.W. Lin. Estimating the
Computational Cost of Logic Programs. In 1994 International Static Analysis
Symposium, pages 255-266, Namur, Belgium, September 1994.

[dMSC93] Vítor Manuel de Moráis Santos Costa. Compile-Time Analysis for the Parallel
Execution of Logic Programs in Andorra-I. PhD thesis, University of Bristol,
August 1993.

[Dum94] Veroniek Dumortier. Freeness and Related Analyses of Constraint Logic Pro­
grams using Abstract Interpretation. PhD thesis, K.U.Leuven, Dept. of Com­
puter Science, October 1994.

[eA82] A. Colmerauer et Al. Prolog II: Reference Manual and Theoretical Model.
Groupe D'intelligence Artificielle, Faculté Des Sciences De Luminy, Marseilles,
1982.

[Eur93] European Computer Research Center. Eclipse User's Guide, 1993.

[Gar94] María José García de la Banda García. Independence, Global Analysis, and Par-
allelism in Dynamically Scheduled Constraint Logic Programming. PhD thesis,
Universidad Politécnica de Madrid (UPM), July 1994.

[GBH95] M. García de la Banda, F. Bueno, and M. Hermenegildo. Automatic Compile-
Time Parallelization of CLP Programs by Analysis and Transformation to a
Concurrent Constraint Language. Technical Report CLIP3/95.0, Facultad de
Informática, UPM, June 1995. Also in ILPS'95 WS on Parallel Logic Program­
ming Systems.

[GC92] G. Gupta and V. Santos Costa. And-Or Parallelism in Full Prolog based on
Paged Binding Array. In Parallel Architectures and Languages Europe '92.
Springer Verlag, June 1992. to appear.

[GH93] M. García de la Banda and M. Hermenegildo. A Practical Approach to the
Global Analysis of CLP Programs. In Dale Miller, editor, Proceedings of the
lOth International Logic Programming Symposium, pages 437-455, Vancouver,
Canadá, October 1993. MIT Press.

[GHM93] M. García de la Banda, M. Hermenegildo, and K. Marriott. Independence in
Constraint Logic Programs. In 1993 International Logic Programming Sympo­
sium, pages 130-146. MIT Press, Cambridge, MA, October 1993.

[GHM95] M. García de la Banda, M. Hermenegildo, and K. Marriott. Independence
and Search Space Preservation in Dynamically Scheduled Constraint Logic Lan­
guages. Technical Report CLIP10/95.0, Facultad de Informática, UPM, Febru-
ary 1995.

[GHPC94] G. Gupta, M. Hermenegildo, E. Pontelli, and V. Santos Costa. ACE: And/Or-
parallel Copying-based Execution of Logic Programs. In International Confer-
ence on Logic Programming, pages 93-110. MIT Press, June 1994.

[GMS95] M. García de la Banda, K. Marriott, and P. Stuckey. Efficient Analysis of Con­
straint Logic Programs with Dynamic Scheduling. In ICLP95 WS on Abstract
Interpretation of Logic Languages, Japan, June 1995.

[GSCYH91] G. Gupta, V. Santos-Costa, R. Yang, and M. Hermenegildo. IDIOM: Integrating
Dependent and-, Independent and-, and Or-parallelism. In 1991 International
Logic Programming Symposium, pages 152-166. MIT Press, October 1991.

[HCC95] M. Hermenegildo, D. Cabeza, and M. Carro. Using Attributed Variables in
the Implementation of Concurrent and Parallel Logic Programming Systems.
In Proc. of the Twelfth International Conference on Logic Programming, pages
631-645. MIT Press, June 1995.

[Her86] M. V. Hermenegildo. An Abstract Machine for Restricted AND-parallel Execu-
tion of Logic Programs. In Third International Conference on Logic Program-
ming, number 225 in Lecture Notes in Computer Science, pages 25-40. Imperial
College, Springer-Verlag, July 1986.

[HG91] M. Hermenegildo and K. Greene. The &-Prolog System: Exploiting Independent
And-Parallelism. New Generation Computing, 9(3,4):233-257, 1991.

[HMPS95] M. Hermenegildo, K. Marriott, G. Puebla, and P. Stuckey. Incremental Analysis
of Logic Programs. In International Conference on Logic Programming. MIT
Press, June 1995.

[Hol92] C. Holzbaur. Metastructures vs. Attributed Variables in the Context of Exten-
sible Unification. In 1992 International Symposium on Programming Language
Implementation and Logic Programming, pages 260-268. LNCS631, Springer
Verlag, August 1992.

[Hou90] S. Le Houitouze. A New Data Structure for Implementing Extensions to Prolog.
In P. Deransart and J. Maluszyñski, editors, Proceedings of Programming Lan­
guage Implementation and Logic Programming, number 456 in Lecture Notes in
Computer Science, pages 136-150. Springer, August 1990.

[HR95] M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent And-
Parallelism in Logic Programs: Correctness, Efficiency, and Compile-Time Con-
ditions. Journal of Logic Programming, 22(l):l-45, 1995.

[HtCg93] M. Hermenegildo and the CLIP group. Towards CIAO-Prolog - A Parallel
Concurrent Constraint System. In Proc. of the Compulog Net Área Workshop on
Parallelism and Implementation Technologies. Technical University of Madrid,
June 1993.

[HtCg94] M. Hermenegildo and the CLIP group. Some Methodological Issues in the Design
of CIAO - A Generic, Parallel Concurrent Constraint System. In Principies and
Practice of Constraint Programming, LNCS 874, pages 123-133. Springer-Verlag,
May 1994.

[HWD92] M. Hermenegildo, R. Warren, and S. Debray. Global Flow Analysis as a Practical
Compilation Tool. Journal of Logic Programming, 13(4):349-367, August 1992.

[JH90] S. Janson and S. Haridi. Programming Paradigms of the Andorra Kernel Lan­
guage. Technical Report PEPMA Project, SICS, Box 1263, S-164 28 KISTA,
Sweden, November 1990. Forthcoming.

[JH91] S. Janson and S. Haridi. Programming Paradigms of the Andorra Kernel Lan­
guage. In 1991 International Logic Programming Symposium,, pages 167-183.
MIT Press, 1991.

[JL89] D. Jacobs and A. Langen. Accurate and Efficient Approximation of Variable
Aliasing in Logic Programs. In 1989 North American Conference on Logic Pro­
gramming. MIT Press, October 1989.

[KS90] A. King and P. Soper. Granularity analysis of concurrent logic programs. In The
Fifth International Symposium on Computer and Information Sciences, Nevse-
hir, Cappadocia, Turkey, October (1990).

[KS95] A. King and P. Soper. Depth-k Sharing and Freeness. In International Confer-
ence on Logic Programming. MIT Press, June 1995.

[LH95] P. López and M. Hermenegildo. Efficient Term Size Computation for Granularity
Control. In Proc. of the Twelfth International Conference on Logic Programming.
The MIT Press, June 1995.

[LHD94] P. López García, M. Hermenegildo, and S.K. Debray. Towards Granularity Based
Control of Parallelism in Logic Programs. In Proc. of First International Sym­
posium on Parallel Symbolic Computation, PASCO'94, pages 133-144. World
Scientific Publishing Company, September 1994.

[MGH94] K. Marriott, M. García de la Banda, and M. Hermenegildo. Analyzing Logic
Programs with Dynamic Scheduling. In 20th. Annual ACM Conf. on Principies
of Programming Languages, pages 240-254. ACM, January 1994.

[MH89] K. Muthukumar and M. Hermenegildo. Determination of Variable Dependence
Information at Compile-Time Through Abstract Interpretation. In 1989 North
American Conference on Logic Programming, pages 166-189. MIT Press, Octo­
ber 1989.

[MH90] K. Muthukumar and M. Hermenegildo. Deriving A Fixpoint Computation Al-
gorithm for Top-down Abstract Interpretation of Logic Programs. Technical
Report ACT-DC-153-90, Microelectronics and Computer Technology Corpora­
tion (MCC), Austin, TX 78759, April 1990.

[MH91] K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing
and Freeness of Program Variables Through Abstract Interpretation. In 1991
International Conference on Logic Programming, pages 49-63. MIT Press, June
1991.

[MH92] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable
Dependency Using Abstract Interpretation. Journal of Logic Programming, 13(2
and 3):315-347, July 1992.

[MRB+94] U. Montanari, F. Rossi, F. Bueno, M. García de la Banda, and M. Hermenegildo.
Towards a Concurrent Semantics based Analysis of CC and CLP. In Principies
and Practice of Constraint Programming, LNCS 874, pages 151-161. Springer-
Verlag, May 1994.

[MS94] K. Marriott and P. Stuckey. Approximating Interaction Between Linear Arith-
metic Constraints. In 1994 International Symposium on Logic Programming,
pages 571-585. MIT Press, 1994.

[MSJB95] A. Mulkers, W. Simoens, G. Janssens, and M. Bruynooghe. On the Practicality
of Abstract Equation Systems. In International Conference on Logic Program­
ming. MIT Press, June 1995.

[Mut91] Kalyan Muthukumar. Compüe-time Algorithms for Efficient Parallel Implemen-
tation of Logic Programs. PhD thesis, University of Texas at Austin, August
1991.

[Neu90] U. Neumerkel. Extensible Unification by Metastructures. In Proceeding of the
META '90 workshop, 1990.

[PGH95] E. Pontelli, G. Gupta, and M. Hermenegildo. &ACE: A High-Performance
Parallel Prolog System. In International Parallel Processing Symposium. IEEE
Computer Society Technical Committee on Parallel Processing, IEEE Computer
Society, April 1995.

[PGT95a] E. Pontelli, G. Gupta, and D. Tang. Determinacy Driven Optimizations of
And-Parallel Prolog Implementations. In Proc. of the Twelfth International
Conference on Logic Programming. MIT Press, June 1995.

[PGT+95b] E. Pontelli, G. Gupta, D. Tang, M. Hermenegildo, and M. Carro. Efficient
Implementation of And-parallel Prolog Systems. Technical Report CLIP4/95.0,
T.U. of Madrid (UPM), June 1995.

[PH95a] G. Puebla and M. Hermenegildo. Implementation of Múltiple Specialization in
Logic Programs. In Proc. ACM SIGPLAN Symposium on Partial Evaluation
and Semantics Based Program Manipulation. ACM, June 1995.

[PH95b] G. Puebla and M. Hermenegildo. Specialization and Optimization of Constraint
Programs with Dynamic Scheduling. Technical Report CLIP12/95.0, Facultad
de Informática, UPM, September 1995. Presented at the 1995 COMPULOG
Meeting on Program Development.

[SCWY90] V. Santos-Costa, D.H.D. Warren, and R. Yang. Andorra-I: A Parallel Prolog
System that Transparently Exploits both And- and Or-parallelism. In Pro-
ceedings of the 3rd. ACM SIGPLAN Symposium on Principies and Practice of
Parallel Programming. ACM, April 1990.

[She92] K. Shen. Exploiting Dependent And-Parallelism in Prolog: The Dynamic, De-
pendent And-Parallel Scheme. In Proc. Joint Int'l. Conf. and Symp. on Logic
Prog. MIT Press, 1992.

[Smo94] G. Smolka. The Definition of Kernel Oz. DFKI Oz documentation series, Ger­
mán Research Center for Artificial Intelligence (DFKI), November 1994.

[Son86] H. Sondergaard. An application of abstract interpretation of logic programs:
occur check reduction. In European Symposium on Programming, LNCS 123,
pages 327-338. Springer-Verlag, 1986.

[Swe95] Swedish Institute of Computer Science, P.O. Box 1263, S-16313 Spanga, Sweden.
Sicstus Prolog V3.0 User's Manual, 1995.

[Win92] W. Winsborough. Múltiple Specialization using Minimal-Function Graph Se­
mantics. Journal of Logic Programming, 13(2 and 3):259-290, July 1992.

