3,573 research outputs found

    Distribution of enteric glia and GDNF during gut inflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The enteric glia network may be involved in the pathogenesis of inflammatory bowel disease (IBD). Enteric glia cells (EGCs) are the major source of glial-derived neurotrophic factor (GDNF), which regulates apoptosis of enterocytes. The aim of the study was to determine the distribution of EGCs and GDNF during gut inflammation and to elucidate a possible diminished enteric glia network in IBD.</p> <p>Methods</p> <p>The expression of glial fibrillary acidic protein (GFAP) in colonic biopsies of patients with IBD, controls and patients with infectious colitis was detected by immunohistochemistry and Western blot. Tissue GDNF levels were measured by ELISA.</p> <p>Results</p> <p>The expression of GFAP and GDNF in the mucosal plexus is highly increased in the inflamed colon of patients with ulcerative colitis (UC) and infectious colitis. Although the GDNF and GFAP content are increased in Crohn's disease (CD), it is significantly less. Additionally the non-inflamed colon of CD patients showed a reduced GFAP and no GDNF expression compared to controls and the non-inflamed colon of UC patients.</p> <p>Conclusions</p> <p>GFAP and GDNF as signs of activated EGCs are increased in the inflamed mucosa of patients with UC and infectious colitis, which underline an unspecific role of EGC in the regulation of intestinal inflammation. The reduced GFAP and GDNF content in the colon of CD patients suggest a diminished EGC network in this disease. This might be a part of the pathophysiological puzzle of CD.</p

    Directivity of a Planar Hard-Dielectric Fabry-Perot Optical Ultrasound Sensor

    Get PDF
    A planar hard-dielectric Fabry-Pérot (FP) optical ultrasound sensor was modelled analytically to study how different wave modes affect the directionality. The sensor was modelled as a multilayered structure using the global matrix method. Modal dispersion curves were extracted from the model to enable features of the directional response to be linked to specific wave phenomena. The analytical model showed good agreement with the measured directional response. The key features of the directional response are linked to wave effects such as the water-substrate and water-spacer compressional and shear critical angles. A region of high sensitivity immediately after the shear critical angle is associated with a leaky-Rayleigh wave which has a frequency-dependent phase speed. At higher frequencies, this region is diminished by a minimum which occurs when the mirrors have the same vertical displacement, resulting in a lack of sensitivity

    Cation distribution in manganese cobaltite spinels Co3−xMnxO4 (0 ≤ x ≤ 1) determined by thermal analysis

    Get PDF
    Thermogravimetric analysis was used in order to study the reduction in air of submicronic powders of Co3−x Mn x O4 spinels, with 0 ≤ x ≤ 1. For x = 0 (i.e. Co3O4), cation reduction occurred in a single step. It involved the CoIII ions at the octahedral sites, which were reduced to Co2+ on producing CoO. For 0 < x ≤ 1, the reduction occurred in two stages at increasing temperature with increasing amounts of manganese. The first step corresponded to the reduction of octahedral CoIII ions and the second was attributed to the reduction of octahedral Mn4+ ions to Mn3+. From the individual weight losses and the electrical neutrality of the lattice, the CoIII and Mn4+ ion concentrations were calculated. The distribution of cobalt and manganese ions present on each crystallographic site of the spinel was determined. In contrast to most previous studies that took into account either CoIII and Mn3+ or Co2+, CoIII and Mn4+ only, our thermal analysis study showed that Co2+/CoIII and Mn3+/Mn4+ pairs occupy the octahedral sites. These results were used to explain the resistivity measurements carried out on dense ceramics prepared from our powders sintered at low temperature (700–750 °C) in a Spark Plasma Sintering apparatus

    Analysis of the Directivity of Glass Etalon Fabry-Pérot Ultrasound Sensors

    Get PDF
    Planar glass-etalon Fabry-Pérot (FP) optical ultrasound sensors offer an alternative to piezoelectric sensors for measurements of high-intensity focused ultrasound (HIFU) fields and other metrological applications. In this work, a model of the frequency-dependent directional response of the Fabry-Pérot sensor was developed using the global matrix method, treating the sensor as a multilayered elastic structure. The model was validated against the experimentally measured directional response of an air-backed cover-slip Fabry-Pérot sensor with well-known material properties. Additionally, the model was compared with measurements of an all-hard-dielectric sensor suitable for HIFU measurements. The model was then used to calculate modal dispersion curves for both glass-etalon sensors, allowing the features of the directional response to be linked to specific wave phenomena. The features in the directivity of the air-backed cover-slip sensor are due to guided Lamb waves. Symmetric Lamb modes give rise to regions of high sensitivity whereas anti-symmetric modes cause regions of low sensitivity. For the all-hard-dielectric sensor, two features correspond to the water-substrate and water-spacer compressional and shear critical angles. A region of high sensitivity close to the shear critical angle is associated with a leaky-Rayleigh wave, which has a frequency-dependent phase speed. At higher frequencies, this feature is counteracted by a region of low sensitivity which occurs when there is no difference in the vertical displacement of the mirrors forming the Fabry-Pérot cavity. The model may be used to improve and optimize the design of Fabry-Pérot sensors, or could be used to assist with the accurate deconvolution of the directional response from array measurements in metrological and imaging applications

    Transit Timing and Duration Variations for the Discovery and Characterization of Exoplanets

    Full text link
    Transiting exoplanets in multi-planet systems have non-Keplerian orbits which can cause the times and durations of transits to vary. The theory and observations of transit timing variations (TTV) and transit duration variations (TDV) are reviewed. Since the last review, the Kepler spacecraft has detected several hundred perturbed planets. In a few cases, these data have been used to discover additional planets, similar to the historical discovery of Neptune in our own Solar System. However, the more impactful aspect of TTV and TDV studies has been characterization of planetary systems in which multiple planets transit. After addressing the equations of motion and parameter scalings, the main dynamical mechanisms for TTV and TDV are described, with citations to the observational literature for real examples. We describe parameter constraints, particularly the origin of the mass/eccentricity degeneracy and how it is overcome by the high-frequency component of the signal. On the observational side, derivation of timing precision and introduction to the timing diagram are given. Science results are reviewed, with an emphasis on mass measurements of transiting sub-Neptunes and super-Earths, from which bulk compositions may be inferred.Comment: Revised version. Invited review submitted to 'Handbook of Exoplanets,' Exoplanet Discovery Methods section, Springer Reference Works, Juan Antonio Belmonte and Hans Deeg, Eds. TeX and figures may be found at https://github.com/ericagol/TTV_revie

    3D time series analysis of cell shape using Laplacian approaches

    Get PDF
    Background: Fundamental cellular processes such as cell movement, division or food uptake critically depend on cells being able to change shape. Fast acquisition of three-dimensional image time series has now become possible, but we lack efficient tools for analysing shape deformations in order to understand the real three-dimensional nature of shape changes. Results: We present a framework for 3D+time cell shape analysis. The main contribution is three-fold: First, we develop a fast, automatic random walker method for cell segmentation. Second, a novel topology fixing method is proposed to fix segmented binary volumes without spherical topology. Third, we show that algorithms used for each individual step of the analysis pipeline (cell segmentation, topology fixing, spherical parameterization, and shape representation) are closely related to the Laplacian operator. The framework is applied to the shape analysis of neutrophil cells. Conclusions: The method we propose for cell segmentation is faster than the traditional random walker method or the level set method, and performs better on 3D time-series of neutrophil cells, which are comparatively noisy as stacks have to be acquired fast enough to account for cell motion. Our method for topology fixing outperforms the tools provided by SPHARM-MAT and SPHARM-PDM in terms of their successful fixing rates. The different tasks in the presented pipeline for 3D+time shape analysis of cells can be solved using Laplacian approaches, opening the possibility of eventually combining individual steps in order to speed up computations

    Informing investment to reduce inequalities: a modelling approach

    Get PDF
    Background: Reducing health inequalities is an important policy objective but there is limited quantitative information about the impact of specific interventions. Objectives: To provide estimates of the impact of a range of interventions on health and health inequalities. Materials and methods: Literature reviews were conducted to identify the best evidence linking interventions to mortality and hospital admissions. We examined interventions across the determinants of health: a ‘living wage’; changes to benefits, taxation and employment; active travel; tobacco taxation; smoking cessation, alcohol brief interventions, and weight management services. A model was developed to estimate mortality and years of life lost (YLL) in intervention and comparison populations over a 20-year time period following interventions delivered only in the first year. We estimated changes in inequalities using the relative index of inequality (RII). Results: Introduction of a ‘living wage’ generated the largest beneficial health impact, with modest reductions in health inequalities. Benefits increases had modest positive impacts on health and health inequalities. Income tax increases had negative impacts on population health but reduced inequalities, while council tax increases worsened both health and health inequalities. Active travel increases had minimally positive effects on population health but widened health inequalities. Increases in employment reduced inequalities only when targeted to the most deprived groups. Tobacco taxation had modestly positive impacts on health but little impact on health inequalities. Alcohol brief interventions had modestly positive impacts on health and health inequalities only when strongly socially targeted, while smoking cessation and weight-reduction programmes had minimal impacts on health and health inequalities even when socially targeted. Conclusions: Interventions have markedly different effects on mortality, hospitalisations and inequalities. The most effective (and likely cost-effective) interventions for reducing inequalities were regulatory and tax options. Interventions focused on individual agency were much less likely to impact on inequalities, even when targeted at the most deprived communities

    Sex-limited genome-wide linkage scan for body mass index in an unselected sample of 933 Australian twin families

    Get PDF
    Genes involved in pathways regulating body weight may operate differently in men and women. To determine whether sex-limited genes influence the obesity-related phenotype body mass index (BMI), we have conducted a general non-scalar sex-limited genome-wide linkage scan using variance components analysis in Mx (Neale, 2002). BMI measurements and genotypic data were available for 2053 Australian female and male adult twins and their siblings from 933 families. Clinical measures of BMI were available for 64.4% of these individuals, while only self-reported measures were available for the remaining participants. The mean age of participants was 39.0 years of age (SD 12.1 years). The use of a sex-limited linkage model identified areas on the genome where quantitative trait loci (QTL) effects differ between the sexes, particularly on chromosome 8 and 20, providing us with evidence that some of the genes responsible for BMI may have different effects in men and women. Our highest linkage peak was observed at 12q24 (-logp = 3.02), which was near the recommended threshold for suggestive linkage (-logp = 3.13). Previous studies have found evidence for a quantitative trait locus on 12q24 affecting BMI in a wide range of populations, and candidate genes for non-insulin-dependent diabetes mellitus, a consequence of obesity, have also been mapped to this region. We also identified many peaks near a -log p of 2 (threshold for replicating an existing finding) in many areas across the genome that are within regions previously identified by other studies, as well as in locations that harbor genes known to influence weight regulation

    Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer

    Get PDF
    INTRODUCTION Breast cancer remains a significant scientific, clinical and societal challenge. This gap analysis has reviewed and critically assessed enduring issues and new challenges emerging from recent research, and proposes strategies for translating solutions into practice. METHODS More than 100 internationally recognised specialist breast cancer scientists, clinicians and healthcare professionals collaborated to address nine thematic areas: genetics, epigenetics and epidemiology; molecular pathology and cell biology; hormonal influences and endocrine therapy; imaging, detection and screening; current/novel therapies and biomarkers; drug resistance; metastasis, angiogenesis, circulating tumour cells, cancer 'stem' cells; risk and prevention; living with and managing breast cancer and its treatment. The groups developed summary papers through an iterative process which, following further appraisal from experts and patients, were melded into this summary account. RESULTS The 10 major gaps identified were: (1) understanding the functions and contextual interactions of genetic and epigenetic changes in normal breast development and during malignant transformation; (2) how to implement sustainable lifestyle changes (diet, exercise and weight) and chemopreventive strategies; (3) the need for tailored screening approaches including clinically actionable tests; (4) enhancing knowledge of molecular drivers behind breast cancer subtypes, progression and metastasis; (5) understanding the molecular mechanisms of tumour heterogeneity, dormancy, de novo or acquired resistance and how to target key nodes in these dynamic processes; (6) developing validated markers for chemosensitivity and radiosensitivity; (7) understanding the optimal duration, sequencing and rational combinations of treatment for improved personalised therapy; (8) validating multimodality imaging biomarkers for minimally invasive diagnosis and monitoring of responses in primary and metastatic disease; (9) developing interventions and support to improve the survivorship experience; (10) a continuing need for clinical material for translational research derived from normal breast, blood, primary, relapsed, metastatic and drug-resistant cancers with expert bioinformatics support to maximise its utility. The proposed infrastructural enablers include enhanced resources to support clinically relevant in vitro and in vivo tumour models; improved access to appropriate, fully annotated clinical samples; extended biomarker discovery, validation and standardisation; and facilitated cross-discipline working. CONCLUSIONS With resources to conduct further high-quality targeted research focusing on the gaps identified, increased knowledge translating into improved clinical care should be achievable within five years

    The effect of travel restrictions on the spread of a moderately contagious disease

    Get PDF
    BACKGROUND: Much research in epidemiology has been focused on evaluating conventional methods of control strategies in the event of an epidemic or pandemic. Travel restrictions are often suggested as an efficient way to reduce the spread of a contagious disease that threatens public health, but few papers have studied in depth the effects of travel restrictions. In this study, we investigated what effect different levels of travel restrictions might have on the speed and geographical spread of an outbreak of a disease similar to severe acute respiratory syndrome (SARS). METHODS: We used a stochastic simulation model incorporating survey data of travel patterns between municipalities in Sweden collected over 3 years. We tested scenarios of travel restrictions in which travel over distances >50 km and 20 km would be banned, taking into account different levels of compliance. RESULTS: We found that a ban on journeys >50 km would drastically reduce the speed and geographical spread of outbreaks, even when compliance is < 100%. The result was found to be robust for different rates of intermunicipality transmission intensities. CONCLUSION: This study supports travel restrictions as an effective way to mitigate the effect of a future disease outbreak
    corecore