98 research outputs found

    Mechanisms of leukocyte migration across the blood–retina barrier

    Get PDF
    Immune-mediated inflammation in the retina is regulated by a combination of anatomical, physiological and immuno-regulatory mechanisms, referred to as the blood–retina barrier (BRB). The BRB is thought to be part of the specialised ocular microenvironment that confers protection or “immune privilege” by deviating or suppressing destructive inflammation. The barrier between the blood circulation and the retina is maintained at two separate anatomical sites. These are the endothelial cells of the inner retinal vasculature and the retinal pigment epithelial cells on Bruch’s membrane between the fenestrated choroidal vessels and the outer retina. The structure and regulation of the tight junctions forming the physical barrier are described. For leukocyte migration across the BRB to occur, changes are needed in both the leukocytes themselves and the cells forming the barrier. We review how the blood–retina barrier is compromised in various inflammatory diseases and discuss the mechanisms controlling leukocyte subset migration into the retina in uveoretinitis in more detail. In particular, we examine the relative roles of selectins and integrins in leukocyte interactions with the vascular endothelium and the pivotal role of chemokines in selective recruitment of leukocyte subsets, triggering adhesion, diapedesis and migration of inflammatory cells into the retinal tissue

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Are tangles as toxic as they look?

    Get PDF
    Neurofibrillary tangles are intracellular accumulations of hyperphosphorylated and misfolded tau protein characteristic of Alzheimer's disease and other tauopathies. Classic cross-sectional studies of Alzheimer patient brains showed associations of tangle accumulation with neuronal loss, synapse loss, and dementia, which led to the supposition that tangles are toxic to neurons. More recent advances in imaging techniques and mouse models have allowed the direct exploration of the question of toxicity of aggregated versus soluble tau and have surprisingly challenged the view of tangles as toxic species in the brain. Here, we review these recent experiments on the nature of the toxicity of tau with particular emphasis on our experiments imaging tangles in the intact brain through a cranial window, which allows observation of tangle formation and longitudinal imaging of the fate of tangle-bearing neurons. Neurofibrillary tangles (NFT) were first described in 1906 by Alois Alzheimer based on Bielschowsky silver staining of the brain of his demented patient Auguste D (Alzheimer 1907; Goedert and Spillantini 2006). These intraneuronal aggregates have subsequently been found to be composed primarily of hyperphosphorylated tau protein and are definitive pathological lesions not only in Alzheimer's disease but also in a class of neurodegenerative tauopathies (Goedert et al. 1988; Spires-Jones et al. 2009). NFT pathology in Alzheimer's disease (AD) correlates closely with cognitive decline and synapse and neuronal loss (Braak and Braak 1997; Bretteville and Planel 2008; Congdon and Duff 2008; Mocanu et al. 2008b; Spires-Jones et al. 2009). As a result, NFT have long been considered indicative of impending neuronal cell death. More recent evidence, however, opposes this classical view. Here we review evidence addressing the question of whether NFT cause structural or functional neuronal damage

    Guidelines for management of ischaemic stroke and transient ischaemic attack 2008

    Get PDF
    This article represents the update of the European Stroke Initiative Recommendations for Stroke Management. These guidelines cover both ischaemic stroke and transient ischaemic attacks, which are now considered to be a single entity. The article covers referral and emergency management, Stroke Unit service, diagnostics, primary and secondary prevention, general stroke treatment, specific treatment including acute management, management of complications, and rehabilitation

    The DUNE Far Detector Interim Design Report, Volume 3: Dual-Phase Module

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 3 describes the dual-phase module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    The DUNE Far Detector Interim Design Report, Volume 2: Single-Phase Module

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 2 describes the single-phase module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    The DUNE Far Detector Interim Design Report Volume 1: Physics, Technology and Strategies

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE Far Detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 1 contains an executive summary that describes the general aims of this document. The remainder of this first volume provides a more detailed description of the DUNE physics program that drives the choice of detector technologies. It also includes concise outlines of two overarching systems that have not yet evolved to consortium structures: computing and calibration. Volumes 2 and 3 of this IDR describe, for the single-phase and dual-phase technologies, respectively, each detector module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    The DUNE Far Detector Interim Design Report Volume 1: Physics, Technology and Strategies

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE Far Detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 1 contains an executive summary that describes the general aims of this document. The remainder of this first volume provides a more detailed description of the DUNE physics program that drives the choice of detector technologies. It also includes concise outlines of two overarching systems that have not yet evolved to consortium structures: computing and calibration. Volumes 2 and 3 of this IDR describe, for the single-phase and dual-phase technologies, respectively, each detector module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure
    corecore