1,434 research outputs found
The Dawn of Open Access to Phylogenetic Data
The scientific enterprise depends critically on the preservation of and open
access to published data. This basic tenet applies acutely to phylogenies
(estimates of evolutionary relationships among species). Increasingly,
phylogenies are estimated from increasingly large, genome-scale datasets using
increasingly complex statistical methods that require increasing levels of
expertise and computational investment. Moreover, the resulting phylogenetic
data provide an explicit historical perspective that critically informs
research in a vast and growing number of scientific disciplines. One such use
is the study of changes in rates of lineage diversification (speciation -
extinction) through time. As part of a meta-analysis in this area, we sought to
collect phylogenetic data (comprising nucleotide sequence alignment and tree
files) from 217 studies published in 46 journals over a 13-year period. We
document our attempts to procure those data (from online archives and by direct
request to corresponding authors), and report results of analyses (using
Bayesian logistic regression) to assess the impact of various factors on the
success of our efforts. Overall, complete phylogenetic data for ~60% of these
studies are effectively lost to science. Our study indicates that phylogenetic
data are more likely to be deposited in online archives and/or shared upon
request when: (1) the publishing journal has a strong data-sharing policy; (2)
the publishing journal has a higher impact factor, and; (3) the data are
requested from faculty rather than students. Although the situation appears
dire, our analyses suggest that it is far from hopeless: recent initiatives by
the scientific community -- including policy changes by journals and funding
agencies -- are improving the state of affairs
Fuel Conditions Associated with Native and Exotic Grasses in a Subtropical Dry Forest in Puerto Rico
Exotic grasses capable of increasing frequency and intensity of anthropogenic fire have invaded subtropical and tropical dry forests worldwide. Since many dry forest trees are susceptible to fire, this can result in decline of native species and loss of forest cover. While the contribution of exotic grasses to altered fire regimes has been well documented, the role of native grasses in contributing to fuel loads in dry forest has received little attention. We assessed differences in fuel conditions among native and exotic grasses within a subtropical dry forest preserve in Puerto Rico. We quantified fine fuel loads, fuel continuity, and seasonal changes in percent dead grass among the following grass patch types: (1) native grass with no known history of recent fire, (2) exotic grass that had burned once (single burn), and (3) exotic grass that burns frequently. Sampling was conducted during one wet season (August to October 2008) and again in the following dry season (February to March 2009). Overall, fine fuel loading was highest in native grass, but this was due to woody fuels rather than grass fuels. Percent of dead grass fuels increased with the transition from wet to dry season, and this increase was more pronounced for exotic grasses. Fuel continuity was highest in frequently burned exotic grass. Differences in grass phenology and fuel continuity may contribute to differences in fire frequency among native and exotic grass patches. Fuel management focused on prescribed fire should be used in conjunction with restoration of tree canopy to reduce fuels and limit development of a grass-fire cycle
Constraints from muon g-2 and LFV processes in the Higgs Triplet Model
Constraints from the muon anomalous magnetic dipole moment and lepton flavor
violating processes are translated into lower bounds on v_Delta*m_H++ in the
Higgs Triplet Model by considering correlations through the neutrino mass
matrix. The discrepancy of the sign of the contribution to the muon anomalous
magnetic dipole moment between the measurement and the prediction in the model
is clarified. It is shown that mu to e gamma, tau decays (especially, tau to mu
e e), and the muonium conversion can give a more stringent bound on
v_Delta*m_H++ than the bound from mu to eee which is expected naively to give
the most stringent one.Comment: 18 pages, 16 figure
A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry
We present here a review of the fundamental topics of Hartree-Fock theory in
Quantum Chemistry. From the molecular Hamiltonian, using and discussing the
Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock
equations for the electronic problem. Special emphasis is placed in the most
relevant mathematical aspects of the theoretical derivation of the final
equations, as well as in the results regarding the existence and uniqueness of
their solutions. All Hartree-Fock versions with different spin restrictions are
systematically extracted from the general case, thus providing a unifying
framework. Then, the discretization of the one-electron orbitals space is
reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition
of the basic underlying concepts related to the construction and selection of
Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we
close the review with a section in which the most relevant modern developments
(specially those related to the design of linear-scaling methods) are commented
and linked to the issues discussed. The whole work is intentionally
introductory and rather self-contained, so that it may be useful for non
experts that aim to use quantum chemical methods in interdisciplinary
applications. Moreover, much material that is found scattered in the literature
has been put together here to facilitate comprehension and to serve as a handy
reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and
subeqn package
Comprehensive Analysis of Transcript Start Sites in Ly49 Genes Reveals an Unexpected Relationship with Gene Function and a Lack Of Upstream Promoters
Comprehensive analysis of the transcription start sites of the Ly49 genes of C57BL/6 mice using the oligo-capping 5′-RACE technique revealed that the genes encoding the “missing self” inhibitory receptors, Ly49A, C, G, and I, were transcribed from multiple broad regions in exon 1, in the intron1/exon2 region, and upstream of exon -1b. Ly49E was also transcribed in this manner, and uniquely showed a transcriptional shift from exon1 to exon 2 when NK cells were activated in vitro with IL2. Remarkably, a large proportion of Ly49E transcripts was then initiated from downstream of the translational start codon. By contrast, the genes encoding Ly49B and Q in myeloid cells, the activating Ly49D and H receptors in NK cells, and Ly49F in activated T cells, were predominantly transcribed from a conserved site in a pyrimidine-rich region upstream of exon 1. An ∼200 bp fragment from upstream of the Ly49B start site displayed tissue-specific promoter activity in dendritic cell lines, but the corresponding upstream fragments from all other Ly49 genes lacked detectable tissue-specific promoter activity. In particular, none displayed any significant activity in a newly developed adult NK cell line that expressed multiple Ly49 receptors. Similarly, no promoter activity could be found in fragments upstream of intron1/exon2. Collectively, these findings reveal a previously unrecognized relationship between the pattern of transcription and the expression/function of Ly49 receptors, and indicate that transcription of the Ly49 genes expressed in lymphoid cells is achieved in a manner that does not require classical upstream promoters
Beyond the standard seesaw: neutrino masses from Kahler operators and broken supersymmetry
We investigate supersymmetric scenarios in which neutrino masses are
generated by effective d=6 operators in the Kahler potential, rather than by
the standard d=5 superpotential operator. First, we discuss some general
features of such effective operators, also including SUSY-breaking insertions,
and compute the relevant renormalization group equations. Contributions to
neutrino masses arise at low energy both at the tree level and through finite
threshold corrections. In the second part we present simple explicit
realizations in which those Kahler operators arise by integrating out heavy
SU(2)_W triplets, as in the type II seesaw. Distinct scenarios emerge,
depending on the mechanism and the scale of SUSY-breaking mediation. In
particular, we propose an appealing and economical picture in which the heavy
seesaw mediators are also messengers of SUSY breaking. In this case, strong
correlations exist among neutrino parameters, sparticle and Higgs masses, as
well as lepton flavour violating processes. Hence, this scenario can be tested
at high-energy colliders, such as the LHC, and at lower energy experiments that
measure neutrino parameters or search for rare lepton decays.Comment: LaTeX, 34 pages; some corrections in Section
Effects of Chlorhexidine mouthwash on the oral microbiome.
Following a single blind, cross-over and non-randomized design we investigated the effect of 7-day use of chlorhexidine (CHX) mouthwash on the salivary microbiome as well as several saliva and plasma biomarkers in 36 healthy individuals. They rinsed thei
Preliminary Target Selection for the DESI Milky Way Survey (MWS)
The DESI Milky Way Survey (MWS) will observe 8 million stars between mag, supplemented by observations of brighter targets under poor observing conditions. The survey will permit an accurate determination of stellar kinematics and population gradients; characterize diffuse substructure in the thick disk and stellar halo; enable the discovery of extremely metal-poor stars and other rare stellar types; and improve constraints on the Galaxy's 3D dark matter distribution from halo star kinematics. MWS will also enable a detailed characterization of the stellar populations within 100 pc of the Sun, including a complete census of white dwarfs. The target catalog from the preliminary selection described here is public
- …