27 research outputs found

    An ideal solution? Optimising pretreatment methods for artificially mummified ancient Egyptian tissues

    Get PDF
    RATIONALE Although the analysis of skeletal remains dominates the study of ancient dietary stable isotopes, mummified bodies also allow short‐term diet to be studied through the analysis of soft tissues. The application of resins, waxes and oils during mummification can affect the results obtained. This study assesses a range of methods for removing such substances from mummified tissue. METHODS An experimental mummification model following ancient Egyptian methods was created using a modern pig leg. Sub‐samples of skin, muscle and bone were removed and coated with a range of substances used in Egyptian mummification. Four methods were used to clean these samples before the measurement of the carbon and nitrogen stable isotope ratios of their gelatinised collagen content using a ThermoFinnigan Flash Elemental analyser coupled to a DeltaPlus XL isotope ratio mass spectrometer via a ConFlo III interface. RESULTS The results showed that embalming materials can significantly affect dietary stable isotope ratios, and that these substances are most effectively removed using a mixture of polar and non‐polar solvents. Results indicate that bone samples demineralised with HCl and skin samples produce more accurate results than bone samples demineralised with EDTA or muscle samples. CONCLUSIONS The choice of tissue and the preparation methods used can have a significant effect on the accuracy of stable isotope data obtained from mummified tissue, particularly when embalming materials are also present. A mixture of solvents appears to be a more effective cleaning agent than a single solvent. Demineralisation with HCl is preferable for well‐preserved bone as used in this study, but whether this is the case for more fragile, less well‐preserved bone requires further study. Skin samples produce more consistent data than muscle, but visually distinguishing between these tissues is not simple on ancient mummies

    New perspectives on evolutionary medicine: the relevance of microevolution for human health and disease

    Get PDF
    Evolutionary medicine (EM) is a growing field focusing on the evolutionary basis of human diseases and their changes through time. To date, the majority of EM studies have used pure theories of hominin macroevolution to explain the present-day state of human health. Here, we propose a different approach by addressing more empirical and health-oriented research concerning past, current and future microevolutionary changes of human structure, functions and pathologies. Studying generation-to-generation changes of human morphology that occurred in historical times, and still occur in present-day populations under the forces of evolution, helps to explain medical conditions and warns clinicians that their current practices may influence future humans. Also, analyzing historic tissue specimens such as mummies is crucial in order to address the molecular evolution of pathogens, of the human genome, and their coadaptations.Frank Jakobus RĂŒhli and Maciej Henneber

    Immunosuppression during Acute Infection with Foot-and-Mouth Disease Virus in Swine Is Mediated by IL-10

    Get PDF
    Foot-and-mouth disease virus (FMDV) is one of the most contagious animal viruses, causing a devastating disease in cloven-hoofed animals with enormous economic consequences. Identification of the different parameters involved in the immune response elicited against FMDV remains unclear, and it is fundamental the understanding of such parameters before effective control measures can be put in place. In the present study, we show that interleukin-10 (IL-10) production by dendritic cells (DCs) is drastically increased during acute infection with FMDV in swine. In vitro blockade of IL-10 with a neutralizing antibody against porcine IL-10 restores T cell activation by DCs. Additionally, we describe that FMDV infects DC precursors and interferes with DC maturation and antigen presentation capacity. Thus, we propose a new mechanism of virus immunity in which a non-persistent virus, FMDV, induces immunosuppression by an increment in the production of IL-10, which in turn, reduces T cell function. This reduction of T cell activity may result in a more potent induction of neutralizing antibody responses, clearing the viral infection

    Dendritic Cells Exposed to MVA-Based HIV-1 Vaccine Induce Highly Functional HIV-1-Specific CD8+ T Cell Responses in HIV-1-Infected Individuals

    Get PDF
    Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1ÎČ, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8+ T cell response including proliferation, secretion of IFN-Îł, IL-2, TNF-α, MIP-1ÎČ, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B

    Bulk and amino acid isotope analyses of hair detail adult diets and infant feeding practices among pre- and post-maize populations of the northern Chilean coast of the Atacama Desert

    No full text
    This study investigates diet heterogeneity among Chinchorro and Inca adults and subadults living on the northern Chilean coast of the Atacama Desert before and after the introduction of maize cultivation. This is achieved by amino acid carbon isotope analysis and bulk carbon, nitrogen, and sulphur isotope analysis of 1-cm sequential segments of scalp hair from human remains deposited at the funerary sites of Morro 1 and 1–6 (Archaic Period) and Camarones 9 (Late Period). Results show that Chinchorro adults relied predominantly on marine resources and partially on wild plants. Inter-individual variability in diet was limited, indicating food redistribution between sexes. Childhood and adolescent diets were comparable to those of the adults. Partial breastfeeding was continued up to the age of 2–3 yrs. Subsequently, Inca adults relied on a combination of marine resources and maize. Intra- and inter-individual variability in diet was limited suggesting existence of a centralised system of food procurement and redistribution. Childhood and juvenile diets were comparable to those of the adults, except for two malnourished children being raised on maize. Amino acid ή13C analysis of hair keratin is proposed as a potential tool for reconstructing the nutritional status of an infant without population-specific maternal isotope baseline
    corecore