847 research outputs found

    The Empire Strikes Back: Brexit, the Irish Peace Process, and the Limitations of Law

    Get PDF

    Economic evaluation of an Australian nurse home visiting programme : a randomised trial at 3 years

    Get PDF
    Objectives To investigate the additional programme cost and cost-effectiveness of ‘right@home’ Nurse Home Visiting (NHV) programme in relation to improving maternal and child outcomes at child age 3 years compared with usual care. Design A cost–utility analysis from a government-as-payer perspective alongside a randomised trial of NHV over 3-year period. Costs and quality-adjusted lifeyears (QALYs) were discounted at 5%. Analysis used an intention-to-treat approach with multiple imputation. Setting The right@home was implemented from 2013 in Victoria and Tasmania states of Australia, as a primary care service for pregnant women, delivered until child age 2 years. Participants 722 pregnant Australian women experiencing adversity received NHV (n=363) or usual care (clinic visits) (n=359). Primary and secondary outcome measures First, a cost–consequences analysis to compare the additional costs of NHV over usual care, accounting for any reduced costs of service use, and impacts on all maternal and child outcomes assessed at 3 years. Second, cost–utility analysis from a government-as-payer perspective compared additional costs to maternal QALYs to express cost-effectiveness in terms of additional cost per additional QALY gained. Results When compared with usual care at child age 3 years, the right@home intervention cost A7685extraperwoman(95A7685 extra per woman (95%CI A7006 to A8364)andgenerated0.01moreQALYs(95A8364) and generated 0.01 more QALYs (95%CI −0.01 to 0.02). The probability of right@home being cost-effective by child age 3 years is less than 20%, at a willingness-to-pay threshold of A50 000 per QALY. Conclusions Benefits of NHV to parenting at 2 years and maternal health and well-being at 3 years translate into marginal maternal QALY gains. Like previous cost-effectiveness results for NHV programmes, right@home is not cost-effective at 3 years. Given the relatively high up-front costs of NHV, long-term follow-up is needed to assess the accrual of health and economic benefits over time

    Visual attention and autistic behavior in infants with fragile X syndrome

    Get PDF
    Fragile X syndrome (FXS) is the leading known inherited cause of intellectual disability and the most common known biological cause of autism. Approximately 25% to 50% of males with FXS meet full diagnostic criteria for autism. Despite the high comorbidity between FXS and autism and the ability to diagnose FXS prenatally or at birth, no studies have examined indicators of autism in infants with FXS. The current study focused on indices of visual attention, one of the earliest and most robust behavioral indicators of autism in idiopathic (non-FXS) autism. Analyses revealed lower HR variability, shallower HR decelerations, and prolonged look durations in 12-month old infants with FXS that were correlated with severity of autistic behavior but not mental age

    Climate predicts geographic and temporal variation in mosquito-borne disease dynamics on two continents

    Get PDF
    Funding: J.M.C., A.D.L., E.F.L., and E.A.M. were supported by a Stanford Woods Institute for the Environment—Environmental Ventures Program grant (PIs: E.A.M., A.D.L., and E.F.L.). E.A.M. was also supported by a Hellman Faculty Fellowship and a Terman Award. A.D.L., B.A.N., F.M.M., E.N.G.S., M.S.S., A.R.K., R.D., A.A., and H.N.N. were supported by a National Institutes of Health R01 grant (AI102918; PI: A.D.L.). E.A.M., A.M.S.I., and S.J.R. were supported by a National Science Foundation (NSF) Ecology and Evolution of Infectious Diseases (EEID) grant (DEB-1518681), and A.M.S.I. and S.J.R. were also supported by an NSF DEB RAPID grant (1641145). E.A.M. was also supported by a National Institute of General Medical Sciences Maximizing Investigators’ Research Award grant (R35GM133439) and an NSF and Fogarty International Center EEID grant (DEB-2011147).Climate drives population dynamics through multiple mechanisms, which can lead to seemingly context-dependent effects of climate on natural populations. For climate-sensitive diseases, such as dengue, chikungunya, and Zika, climate appears to have opposing effects in different contexts. Here we show that a model, parameterized with laboratory measured climate-driven mosquito physiology, captures three key epidemic characteristics across ecologically and culturally distinct settings in Ecuador and Kenya: the number, timing, and duration of outbreaks. The model generates a range of disease dynamics consistent with observed Aedes aegypti abundances and laboratory-confirmed arboviral incidence with variable accuracy (28-85% for vectors, 44-88% for incidence). The model predicted vector dynamics better in sites with a smaller proportion of young children in the population, lower mean temperature, and homes with piped water and made of cement. Models with limited calibration that robustly capture climate-virus relationships can help guide intervention efforts and climate change disease projections.Publisher PDFPeer reviewe
    corecore