288 research outputs found
Phylogenetic Codivergence Supports Coevolution of Mimetic Heliconius Butterflies
The unpalatable and warning-patterned butterflies _Heliconius erato_ and _Heliconius melpomene_ provide the best studied example of mutualistic Müllerian mimicry, thought – but rarely demonstrated – to promote coevolution. Some of the strongest available evidence for coevolution comes from phylogenetic codivergence, the parallel divergence of ecologically associated lineages. Early evolutionary reconstructions suggested codivergence between mimetic populations of _H. erato_ and _H. melpomene_, and this was initially hailed as the most striking known case of coevolution. However, subsequent molecular phylogenetic analyses found discrepancies in phylogenetic branching patterns and timing (topological and temporal incongruence) that argued against codivergence. We present the first explicit cophylogenetic test of codivergence between mimetic populations of _H. erato_ and _H. melpomene_, and re-examine the timing of these radiations. We find statistically significant topological congruence between multilocus coalescent population phylogenies of _H. erato_ and _H. melpomene_, supporting repeated codivergence of mimetic populations. Divergence time estimates, based on a Bayesian coalescent model, suggest that the evolutionary radiations of _H. erato_ and _H. melpomene_ occurred over the same time period, and are compatible with a series of temporally congruent codivergence events. This evidence supports a history of reciprocal coevolution between Müllerian co-mimics characterised by phylogenetic codivergence and parallel phenotypic change
Zooplankton spine induces aversion in small fish predators
The spined cladoceran Bythotrephes cederstroemi is protected from small fish predators due to the difficulty small fish have in ingesting the spine. Juvenile yellow perch (Perca flavescens) 50–60 mm in length were offered Bythotrephes with alternative prey available in two experiments. First, perch were observed as they gained experience with Bythotrephes and developed aversion to the zooplankter. Perch initially attacked and captured Bythotrephes . However, they struggled to ingest the spined zooplankter, rejected and recaptured it many times, and finally ceased to attack it. Second, perch were offered Bythotrephes with varying portions of the spine removed to clarify the spine's role in inducing such behaviors. Perch showed greater preference to attack nospine and half-spine Bythotrephes , and were less likely to reject and more likely to ingest Bythotrephes with the spine removed. For small or young fish that forage on zooplankton in lakes where Bythotrephes is present, aversion is an efficient response to the conspicuous but unpalatable spined cladoceran. However, aversion allows Bythotrephes , also a predator on zooplankton, to more effectively compete with young fish without an increase in predation risk.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47794/1/442_2004_Article_BF00317591.pd
Optimal-Foraging Predator Favors Commensalistic Batesian Mimicry
BACKGROUND:Mimicry, in which one prey species (the Mimic) imitates the aposematic signals of another prey (the Model) to deceive their predators, has attracted the general interest of evolutionary biologists. Predator psychology, especially how the predator learns and forgets, has recently been recognized as an important factor in a predator-prey system. This idea is supported by both theoretical and experimental evidence, but is also the source of a good deal of controversy because of its novel prediction that in a Model/Mimic relationship even a moderately unpalatable Mimic increases the risk of the Model (quasi-Batesian mimicry). METHODOLOGY/PRINCIPAL FINDINGS:We developed a psychology-based Monte Carlo model simulation of mimicry that incorporates a "Pavlovian" predator that practices an optimal foraging strategy, and examined how various ecological and psychological factors affect the relationships between a Model prey species and its Mimic. The behavior of the predator in our model is consistent with that reported by experimental studies, but our simulation's predictions differed markedly from those of previous models of mimicry because a more abundant Mimic did not increase the predation risk of the Model when alternative prey were abundant. Moreover, a quasi-Batesian relationship emerges only when no or very few alternative prey items were available. Therefore, the availability of alternative prey rather than the precise method of predator learning critically determines the relationship between Model and Mimic. Moreover, the predation risk to the Model and Mimic is determined by the absolute density of the Model rather than by its density relative to that of the Mimic. CONCLUSIONS/SIGNIFICANCE:Although these predictions are counterintuitive, they can explain various kinds of data that have been offered in support of competitive theories. Our model results suggest that to understand mimicry in nature it is important to consider the likely presence of alternative prey and the possibility that predation pressure is not constant
Production in Two-Photon Interactions at CLEO
Using the CLEO detector at the Cornell storage ring, CESR, we study
the two-photon production of , making the first
observation of . We present the
cross-section for as a function of
the center of mass energy and compare it to that predicted by
the quark-diquark model.Comment: 10 pages, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
Observation of the Decay
Using e+e- annihilation data collected by the CLEO~II detector at CESR, we
have observed the decay Ds+ to omega pi+. This final state may be produced
through the annihilation decay of the Ds+, or through final state interactions.
We find a branching ratio of [Gamma(Ds+ to omega pi+)/Gamma(Ds+ to eta
pi+)]=0.16+-0.04+-0.03, where the first error is statistical and the second is
systematic.Comment: 9 pages, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
Spatially Explicit Analyses of Anopheline Mosquitoes Indoor Resting Density: Implications for Malaria Control
Background: The question of sampling and spatial aggregation of malaria vectors is central to vector control efforts and estimates of transmission. Spatial patterns of anopheline populations are complex because mosquitoes' habitats and behaviors are strongly heterogeneous. Analyses of spatially referenced counts provide a powerful approach to delineate complex distribution patterns, and contributions of these methods in the study and control of malaria vectors must be carefully evaluated. Methodology/Principal Findings: We used correlograms, directional variograms, Local Indicators of Spatial Association (LISA) and the Spatial Analysis by Distance IndicEs (SADIE) to examine spatial patterns of Indoor Resting Densities (IRD) in two dominant malaria vectors sampled with a 565 km grid over a 2500 km(2) area in the forest domain of Cameroon. SADIE analyses revealed that the distribution of Anopheles gambiae was different from regular or random, whereas there was no evidence of spatial pattern in Anopheles funestus (Ia = 1.644, Pa0.05, respectively). Correlograms and variograms showed significant spatial autocorrelations at small distance lags, and indicated the presence of large clusters of similar values of abundance in An. gambiae while An. funestus was characterized by smaller clusters. The examination of spatial patterns at a finer spatial scale with SADIE and LISA identified several patches of higher than average IRD (hot spots) and clusters of lower than average IRD (cold spots) for the two species. Significant changes occurred in the overall spatial pattern, spatial trends and clusters when IRDs were aggregated at the house level rather than the locality level. All spatial analyses unveiled scale-dependent patterns that could not be identified by traditional aggregation indices. Conclusions/Significance: Our study illustrates the importance of spatial analyses in unraveling the complex spatial patterns of malaria vectors, and highlights the potential contributions of these methods in malaria control
Considering Usual Medical Care in Clinical Trial Design
Liza Dawson and colleagues discuss the scientific and ethical issues associated with choosing clinical trial designs when there is no consensus on what constitutes usual care
- …