7,225 research outputs found

    The use of multiplayer game theory in the modeling of biological populations

    Get PDF
    The use of game theory in modeling the natural world is widespread. However, this modeling mainly involves two player games only, or "playing the field" games where an individual plays against an entire (infinite) population. Game-theoretic models are common in economics as well, but in this case the use of multiplayer games has not been neglected. This article outlines where multiplayer games have been used in evolutionary modeling and the merits and limitations of these games. Finally, we discuss why there has been so little use of multiplayer games in the biological setting and what developments might be useful

    The biology and culture of marine bivalve molluscs of the genus Anadara

    Get PDF
    A review of the general biology, ecology, population dynamics, reproduction and culture methods of marine bivalves of the family Arcidae, subfamily Anadarinae. These cockles are harvested on a subsistence basis in many tropical, subtropical and warm temperate areas. The important species are Anadara granosa (L.), A. subcrenata (Lischke) and A. broughtoni (Schrenk).Clam culture, Aquaculture techniques, Population dynamics, Reproduction Anadara

    Stochastic models of kleptoparasitism

    Get PDF
    In this paper, we consider a model of kleptoparasitism amongst a small group of individuals, where the state of the population is described by the distribution of its individuals over three specific types of behaviour (handling, searching for or fighting over, food). The model used is based upon earlier work which considered an equivalent deterministic model relating to large, effectively infinite, populations. We find explicit equations for the probability of the population being in each state. For any reasonably sized population, the number of possible states, and hence the number of equations, is large. These equations are used to find a set of equations for the means, variances, covariances and higher moments for the number of individuals performing each type of behaviour. Given the fixed population size, there are five moments of order one or two (two means, two variances and a covariance). A normal approximation is used to find a set of equations for these five principal moments. The results of our model are then analysed numerically, with the exact solutions, the normal approximation and the deterministic infinite population model compared. It is found that the original deterministic models approximate the stochastic model well in most situations, but that the normal approximations are better, proving to be good approximations to the exact distribution, which can greatly reduce computing time

    A framework for modelling and analysing conspecific brood parasitism

    Get PDF
    Recently several papers that model parasitic egg-laying by birds in the nests of others of their own species have been published. Whilst these papers are concerned with answering different questions, they approach the problem in a similar way and have a lot of common features. In this paper a framework is developed which unifies these models, in the sense that they all become special cases of a more general model. This is useful for two main reasons; firstly in order to aid clarity, in that the assumptions and conclusions of each of the models are easier to compare. Secondly it provides a base for further similar models to start from. The basic assumptions for this framework are outlined and a method for finding the ESSs of such models is introduced. Some mathematical results for the general, and more specific, models are considered and their implications discussed. In addition we explore the biological consequences of the results that we have obtained and suggest possible questions which could be investigated using models within or very closely related to our framework
    corecore