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Abstract

The use of game theory in modelling the natural world is widespread.
However this modelling mainly involves two player games only, or ‘playing
the field’ games where an individual plays against an entire (infinite) pop-
ulation. Game theoretic models are common in economics as well, but in
this case the use of multiplayer games has not been neglected. This paper
outlines where multiplayer games have been used in evolutionary modelling
and the merits and limitations of these games. Finally we discuss why there
has been so little use of multiplayer games in the biological setting and what
developments might be useful.

1 Introduction

In this section we start with an overview of important game theoretic con-
cepts. In later sections the various multiplayer games used to model evo-
lutionary processes are broken down into categories and discussed in turn.
In Section 2 we discuss true multiplayer games. Section 3 describe contests
which comprise pairwise games built into a dependence structure and hence
a single multiplayer conflict. In Section 4 we see some related models which
share some of the characteristics of the dependent games of Section 3 but are
not truly multiplayer games. Finally in the discussion we look at the collec-
tion of models available and examine the considerable room for development
of the idea of multiplayer game modelling.

1.1 Game Theory

The theory of games is a mathematical theory of conflict situations where the
outcome is determined by the choices of two or more interacting individuals,
originating with Von Neumann and Morgenstern (1944). Each player has
some, but not total, control over the outcome. The investigation of such
games has been very extensive and in a number of formulations. We briefly
discuss two methods of describing a game which prove useful in the later
sections.

Games in Normal Form
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A game in normal form is defined by a set of players, a set of strategies
for each player and a reward or payoff function which defines the reward
to each player for each set of choices made by all players. A very common
example is the bi-matrix game, which concerns the situation where there are
two players, player 1 having a finite set of pure strategies {1, . . . ,m}, which
are the options that the player can choose to play in a particular game, and
player 2 having a finite set of pure strategies {1, . . . , n}. Players make a
simultaneous choice and if player 1 plays i and player 2 plays j then the
first player receives aij and the second receives bij . The payoffs can then be
grouped into payoff matrices A = (aij), B = (bij).
Players may play mixed strategies, i.e. pT = (p1, . . . , pm) is the strategy
where player 1 plays i with probability pi, for all i. A strategy pair (p,q) is
called a Nash Equilibrium if and only if neither player can profitably alter
their strategy (i.e. increase their payoff) unilaterally.

Extensive Form Games

In some contests individuals do not make single simultaneous decisions.
Either they choose sequentially, or one or more individuals may have more
than one decision to make. These contests are best described using a game
tree, which is a finite tree with a single origin node and other nodes follow
sequentially on paths. At every point where a decision is made by one of
the players (or an outcome is decided by chance) there is a branching of the
tree. The end nodes of the tree denote the end of the game, and each has
a payoff vector determining the reward at this point to all players. Each
player has a set of nodes where it makes a choice and a set of choices for
each such node; its strategy is the collection of choices it will make at all of
these nodes. Such a game is said to be in extensive form (see Selten, 1983 or
van Damme, 1991). The method of dynamic programming is used to work
backwards from the final solutions to find the best strategy to employ at
each node, and hence at the origin node (see Mangel and Clark, 1988). This
idea is used in several of the models described in this paper. It is possible
to rewrite an extensive form game in normal form, but this will typically be
non-generic and some of the Nash equilibria prescribe an irrational sequence
of choices.
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1.2 Evolutionary Game Theory

Game theory has been widely used to model the natural world, particularly
in the area of animal conflicts. It has provided explanations for apparently
paradoxical situations, for example the practice of heavily armed animals
engaging only in ritualistic contests (Maynard Smith, 1982) and the ten-
dency of (especially male) animals to develop extremely costly signals to
acquire mates (Grafen, 1990a and Grafen, 1990b). Some important texts
are Cressman (1992), Hofbauer and Sigmund (1998) and Maynard Smith
(1982). Of particular significance has been the concept of an Evolutionarily
Stable Strategy (ESS) which was introduced by Maynard Smith and Price
(1973). An ESS is a strategy, which if adopted in a conflict by a population,
cannot be invaded by any other strategy played by a small mutant group.
The ESS is thus stable and persists through time, provided that all the payoff
parameters and the set of available pure strategies remain unchanged.

A standard formulation for modelling a conflict amongst an animal pop-
ulation leads to the consideration of matrix games, and is as follows.
Consider a population of animals competing for some resource e.g. food or
mates. Individuals compete in pairwise games for a reward. Assume that
all members of the population are indistinguishable (in that they are of the
same size and strength etc.) and each individual is equally likely to face
each other individual. There are a finite number of pure strategies available
to the players to play in a particular game. These strategies are labelled
1, ..., n. Given the strategies played the outcome is determined; if player 1
plays i against player 2 playing j then player 1 receives reward aij ( player
2 receives aji) representing an adjustment in Darwinian fitness. The value
aij can be thought of as an element in the n×n payoff matrix A (thus these
games are referred to as matrix games). This corresponds to the bi-matrix
game with m = n and B = AT .

An animal can play a mixed strategy represented by a probability vector
p. The expected payoff to player 1 playing p against player 2 playing q,
which is written as E[p,q], is

E[p,q] =
∑

aijpiqj = pTAq (1)

Suppose that p is played by almost all members of the population, the
rest of the population being a small mutant group constituting a fraction α
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of the total population playing q. p is said to be evolutionarily stable (ES)
against q if

E[p, (1− α)p + αq] > E[q, (1− α)p + αq] (2)

for all sufficiently small α. Thus p does better against the mean population
strategy than q does.

This implies that
(i)E[p,p] ≥ E[q,p] (3)

and if (i) is satisfied with equality, then

(ii)E[p,q] > E[q,q] (4)

The vector p is said to be an Evolutionarily Stable Strategy (ESS) if p is
ES against all q 6= p. Thus if all members of a population play p, it cannot
be invaded by any other strategy.

The support of p is the set S(p) = {i : pi > 0}. An ESS p is an internal
ESS if S(p) = {1, . . . , n} so that every pure strategy is involved in the ESS.
A payoff matrix can have many ESSs (see for example, Broom, 2000). There
are restrictions on which strategies can be ESSs of the same payoff matrix,
and this has been investigated using the concept of a Pattern of ESSs (see
Cannings and Vickers, 1988; Vickers and Cannings, 1988). If p1,p2, . . . ,pN

are the ESSs of A, then A has pattern P = {S(p1), S(p2), . . . , S(pN)}. It is
shown in Bishop and Cannings (1976) that no ESS can have support which
is a subset of the support of another ESS of the same matrix; this result is
often known as the Bishop-Cannings Theorem, although the true theorem
gives a rather more powerful result; for the full theorem, see Bishop and
Cannings (1976). A method for finding all the ESSs of a matrix is given by
Haigh (1975).

2 True Multiplayer Games

In this section we consider games which demonstrate genuine multiplayer be-
haviour in the sense that more than two players make simultaneous decisions
which decide the reward to each of the players, in contrast to later sections
which consider interactions of non-independent pairwise games. This type
of game has only been considered twice in the evolutionary setting to my
knowledge, although it is more common in economics.
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2.1 The N-player War of Attrition

The War of Attrition was one of the earliest game theoretic models used to
investigate the behaviour of animals (Maynard Smith, 1974).

Two contestants compete for a prize of value V , and the winner is the
one who is prepared to wait the longest. Both players pay a cost equal to
the length of the time spent waiting. Letting E(x, y) be the reward to an
individual prepared to wait for time x against one prepared to wait y,

E(x, y) =

{
V − y x > y
−x x < y

(5)

E(x, x) = V/2− x (6)

The game has a single ESS, namely to choose x drawn at random from
an exponential distribution with mean V.

Haigh and Cannings (1989) extended this model to a multiplayer setting,
considering four different models, with different assumptions. This is the
earliest example of a multiplayer game applied to a biological setting (though
see Palm, 1984, for a discussion of a general notion of a multiplayer ESS).

Model A: n players compete for a single reward value V ; each must pick
their own value of x at the start of the game, the largest value gains the
reward, all other players pay the time that they waited until dropping out.
Thus

E(X1;X2, . . . , Xn) =

{
V −W1 X1 > W1

−X1 X1 < W1
(7)

where W1 = Max(X2, . . . , Xn). The rewards to other players follow
similarly. Here using analogous reasoning to the two-player game, there is
a unique ESS found by considering the only possible distribution to give an
equal payoff to any value of x played, which means that each player chooses
a value independently from the distribution function

G(x) = (1− exp(−x/V ))1/(n−1) (8)
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Model B: The scenario is as in A, except that when a player drops out, all
remaining players may reassess their strategy in light of the new situation.
It turns out that in this situation the best play involves all but two players
dropping out immediately (assuming they effectively do this sequentially,
so that one leaves first and then the remaining players can then change
their minds) the two players then playing an immediate war of attrition.
This again follows from the fact that the expected reward when two players
remain is zero, so that with more than two players this is not worth any
time investment at all. This model is a special case of

Model C: The scenario is as in B, expect there is a set of rewards available
Vn < Vn−1 < . . . V1, the player leaving when there are exactly j animals left
receiving reward Vj . There is a unique ESS to this game , namely with
j players remaining, wait for time X, where X is exponential with mean
(j − 1)(Vj−1 − Vj) for each j : 2 ≤ j ≤ n.

Model D extends the game by considering scenario C, but with only a
single decision available at the start of the game as in scenario A and is the
most complex (and probably the least realistic) of the four models.

Model C is an important theoretical contribution and seems the most
realistic of the models. In particular the lack of reassessment in A and D
when presented with obvious cues does not seem very plausible. The special
case of C that is model B gives the most generally well-known phenomenon
from this extension of the war of attrition, that all but two players pull out
immediately so that the multiplayer game reduces to the two player one.
One application of this idea is the modelling of juvenile dispersal from a
territory, e.g. badgers (see Blackwell, 1997).

2.2 Multiplayer matrix games

Broom et al (1997b) extended the idea of the matrix game to the multiplayer
setting. This is the most general in character of the multiplayer models, and
considers general results for relatively simple cases. The assumption is that
the order of opponents is irrelevant and so rewards only depend on how
many opponents of any particular strategy a player faces, and not which
order they appear in (thus there is a melee, rather than sequential pairwise
contests, see Section 3). In an n-player game, E[p : qj ,pn−j−1] is the payoff
to a player playing p against j opponents playing q and all other opponents
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playing p. p is ES against q, at level j, if

E[p : qj ,pn−j−1] > E[q : qj ,pn−j−1] (9)

and
E[p : qi,pn−i−1] = E[q : qi,pn−i−1] ∀i < j (10)

p is an ESS if it is ES against all q 6= p and is a level j ESS if it is ES
against all q 6= p where there is some q against which p is ES at level j,
but no q against which it is ES at level k for any k > j.

All pure ESSs must be level 0. The higher level ESSs (j ≥ 2) are non-
generic (mixed ESSs are of level 1 in the generic case) and so the more
restricted definition of an ESS is

(i)E[p : pn−1] ≥ E[q : pn−1] (11)

and

(ii)E[p : pn−1] = E[q : pn−1] ⇒ E[p : q,pn−2] > E[q : q,pn−2] (12)

for all q 6= p.

It is shown that the Bishop-Cannings Theorem is violated for any number
of players greater than two, and indeed for four or more players it is possible
to have two ESSs with the same support (although this is not possible for
three players).

The two-strategy n-player case is investigated completely, and it is shown
that there can be up to n/2 − i internal ESSs and i pure ESSs, for each of
i = 0, 1, 2 for an n player game. Despite the violation of Bishop-Cannings,
there are still restrictions on which patterns can occur; Broom et al (1997b)
goes on to look at the 3-player and 3-strategy case in detail showing which
patterns are attainable and which are not (with one left unknown). The
dynamics of these games in the case of completely symmetric payoffs (all
animals involved in any contest receive the same payoff) is also investigated.
It is shown that a ‘catalyst’ strategy, which when introduced to a population
can invade the current ESS, can move the population to a new ESS in
which it does not feature; a result not possible for two-player games. It is
possible to have an ESS which is not attainable by a sequential introduction
of strategies and so very unlikely to ever appear in a real population (this is
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possible even for ESSs with a large basin of attraction); again a result which
does not happen for two players. The problem of identifying which of several
equilibria actually occur is a common problem in economics and is clearly a
problem for biological systems as well. Many models yield but a single ESS
so this problem does not occur, but we see that as the number of players
increases the potential for multiple solutions (including some which turn out
to de dynamically unreachable) grows and this problem comes more to the
fore. This is a general feature of many multiplayer games.

This early work for the generalization of the concept of matrix games
points the way to possible more general extensions and there is much room
for development. Widely held ideas based upon two-player results are vio-
lated and it seems clear that much of what we believe to be true because of
this simplified modelling will prove to be false.

3 Multiplayer games as structures of pairwise con-
tests

In this section we consider games with a finite number of players who interact
not in a single contest as in the last section but in pairwise games. These
games are embedded in a structure so that the result of each game can
influence both the final reward and which player the next game will be
against. This non-independence means that the pairwise games are in fact
part of one larger multiplayer conflict, with all the added complications that
that implies.

3.1 A sequential-arrivals model of territory acquisition

Broom et al. (1997a) modelled the arrival of birds at a colonial nest-site.
A set of n birds B1, ..., Bn arrive sequentially at n nest sites S1, ..., Sn. The
value of the site Si is Vi(≥ 0) for the bird occupying that site at the end of
the process, i.e. when all birds are settled on a site, where Vi ≥ Vj if i < j.

When a bird arrives it has the choice of going to any vacant site or
challenging the occupier of any occupied site. A challenge is a simple contest
where the challenger wins with probability p ≤ 0.5, otherwise the occupier
wins. The winner becomes the occupier of the contested site, the loser pays
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a cost C > 0 (receives a payoff of −C) and must retreat to an unoccupied
site of its choice.

The contest finishes after the arrival of the final bird. The payoff to a
bird is the value of the site it occupies at the end of the contest minus any
penalties it has received for losing challenges. It is possible to imagine a
more complicated model (for example variable values of C or p depending
upon the value of the site), but this model has the most important feature
(choose a free site or fight) and is amenable to analysis.

The optimal play in a particular example is shown in Table 1. Thus bird
B7 arrives to find the top six sites occupied, it challenges on S4 and goes to
S7 if it loses. Its expected reward is 5.134.

TABLE 1 ABOUT HERE

In Broom et al (1997a) the birds played rationally conditional upon the
positions of all the birds which had arrived before them and upon the as-
sumption that all subsequent birds would also behave rationally. The strate-
gies which resulted were very complicated, but did possess some important
general features, for instance the threshold phenomenon whereby all birds
arriving before the threshold do not challenge and all birds arriving after it
do. Broom et al (2000c) considered three, relatively simple, types of strat-
egy, dividing sites into good sites (1, ..., I), medium sites (I + 1, ..., J) and
poor sites (J + 1, ..., n). For Type 1 strategies, a bird will occupy the best
free site if a good or medium site is available. However, if only poor sites are
free it will challenge for a good site chosen at random with each site having
an equal probability of being chosen. If the bird loses a contest, whether
as challenger or challenged, it occupies the best free site. Thus a strategy
is described by an integer pair (I, J). Type 2 and Type 3 strategies were
refinements of this model. By comparing the values of the parameters I
and J obtained to the theoretical results from Broom et al (1997a), it was
noticed that the simple strategy is generally a good approximation to the
optimal strategy.

Broom et al (1996) considered this model and allowed three strategies
to be played; a strategy S of the form described in Broom et al (2000c)
where birds choose the better sites and then challenge if only poor sites are
available. A strategy T where birds pick the worst available site, unless
they find an occupied site of higher value than a free one, in which case they
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challenge the occupier of the higher site. Strategy U simply chooses the
worst free site. T is both courteous and punishing, with S playing the part
of a cheating strategy. U is courteous but does not punish cheats. T seems a
perverse strategy, but if all birds play T, then S cannot invade. However in
a population with a small non-zero mutation level, which introduces birds
playing the other strategies, U birds can invade a population of Ts and the
population goes from all T to many Us and few Ts, allowing Ss to quickly
invade and eliminate the others.

The optimal strategy generated by Broom et al (1997a) was extremely
complicated, and it seems unreasonable that any organism could play it. But
in Broom et al (2000c) we see that quite simple rules can produce behaviour
which effectively mimics the best strategy. This might be a common feature
of evolution: life is complex and situations can change without warning so
that it may be best not to try to solve the full problem, but to find simple
robust rules which work well most of the time.

Some of the general features of this model were observed in Severinghaus
(1996), who studied the behaviour of Brown Shrike Lanius cristatus arriving
at a breeding ground. The locations of the territories of early arrivals tended
to be scattered throughout the study area, and later birds filled the gaps
between them. Initially there was little aggression between birds, but as the
breeding ground filled up this aggression increased and some territory owners
had to defend their territories several times. This agrees with the general
predictions of the first birds occupying good sites, and later birds challenging
for a site only when only poor sites remain free, and in particular closely
approximates the threshold phenomenon found in Broom et al (1997a). It
was also noticed that prior residence granted the defender an advantage in
any contest, again as in the model. Of course, this is in no way comparable
to fitting the model to data, and merely indicates that the broad thrust of
the model is correct, rather than an accurate model of behaviour. Indeed,
for such complex behaviour it would be very difficult to generate a model
which could be accurately tested in this way.
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3.2 A model of dominance hierarchy formation as a round-
robin contest

The model of Mesterton Gibbons and Dugatkin (1995) considered a game
where every individual interacted with every other one exactly once, called a
round-robin or all-play-all contest, and the result of this interaction decided
the dominance relation between the two animals. They were particularly
interested in whether this situation led to a linear dominance hierarchy where
A dominates all others, B dominates all but A, C dominates all but A and
B etc. They introduced asymmetries into the relevant abilities, or Resource
Holding Potential (RHP), of the individuals and evaluated the influence
of this on the probability that a linear hierarchy was produced. Landau
(1951) and Chase (1974) came to the conclusion that this was unlikely to
occur through such a round-robin tournament because of the large number
of contest (n(n − 1)/2) all of which had to go the ‘right’ way. Both of
these papers assumed that a genuine contest would occur in all cases with
each animal trying its best to win. Mesterton Gibbons and Dugatkin (1995)
consider a more explicitly game-theoretic situation whereby if an animal
knows that it is inferior, then it might choose to give up without a fight
(rather than risking injury for a minimal chance of success) and so some
contests might be decided with probability 1. This also raised the question
of whether animals could tell that others were inferior/ superior and that the
resulting contests might depend greatly upon how much this was the case.
They consider both situations where assessment of differences is perfect and
where it is non-existent.

It is assumed that if an animal of RHP X meets one of RHP Y then
the difference Z=X-Y is crucial in determining the outcome of a contest. In
particular each contest takes the form of the classical Hawk-Dove contest
(see Maynard Smith, 1982) where each individual has two pure strategies
available, Hawk(H) and Dove(D). In this contest, the winner always obtains
V, and the loser -C in a Hawk v Hawk contest and 0 otherwise. A player
playing Hawk always beats one playing Dove and DvD contests are decided
by the toss of an unbiased coin. In the classical game the winner of a
Hawk versus Hawk contest is also decided by an unbiased coin toss, but in
Mesterton Gibbons and Dugatkin (1995) the X animal wins a HvH contest
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with probability

E(x, y) =

{
1
2eαZ Z ≤ 0

1− 1
2e−αZ Z > 0

(13)

The parameter α is a measure of the reliability of RHP, in the sense that
the larger α the more reliable it is in determining the winner of a contest.
RHP could be horn size, for example, and Mesterton Gibbons and Dugatkin
(1995) give values of α estimated from data for different measures of size.

They found the probability of linear hierarchy formation from a round-
robin contest dependent upon group size , the reliability of RHP, the coeffi-
cient of RHP variation (a measure of how variable RHP is within the group)
and the aggression threshold (which is determined by the relative size of
reward and cost in any Hawk Dove contest as well as victory probability if
they both play Hawk) in the two situations where RHP is assessed or not.
Without assessment this probability becomes very small as n increases for
realistic parameter values, and such a hierarchy is virtually impossible for
n = 10. With assessment this probability can remain quite large; this is
due to the fact that weaker animals back down in many contests. Indeed
there can be a high probability of the ‘correct’ hierarchy (in order of RHP)
emerging, whereas this is very unlikely for the non-assessment case. The
authors comment that a weakness of their analysis is the assumption that
RHP is perfectly observable so that animals cannot bluff about their size
(this is common to most models where animals are asymmetric, whether
multiplayer or two player). They point out that the lack of data means
that it is not known to what extent parameter values vary within species,
although some life-history parameters are relatively invariant across species
(Charnov, 1993).

This model has the same lack of structure prevalent in two player games
in the sense that all contests are resolved independently. The paper works
on this assumption and then explores the hierarchy after formation is com-
plete and examines its structure and so gives insight into the type of results
that are consistent with this independent formation. It shows the relative
stability of small populations as opposed to larger ones, but also shows that
even large populations can be linear if a sufficient number of contests result
in one of the contenders giving way; the conditions for when this is likely to
occur are also found. A potential problem is the large number of contests,
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especially for big groups; see for example the knockout contests of the fol-
lowing section for a comparison (although different problems confront this
type of model in large populations). This model makes a good null hypoth-
esis; essentially that of no structure to the contests in the formation phase
of a dominance hierarchy, and should be considered as a possibility before
more complex ideas are mooted.

3.3 Knockout contests

A knockout contest is a multiplayer game which is composed of a number of
pairwise games, and was used as a model of dominance hierarchy formation
in Broom et al (2000a, 2000b). Initially there are 2n players who form 2n−1

pairs and fight so that in each fight there is a ‘winner’ and a ‘loser’. The
losers are eliminated from the competition and the winner enters the next
round, where the process is repeated with 2n−1 players. This continues until
the final round with only two players. Round k was defined as the round
with 2k players remaining, i.e. the players start in round n, and the final
round is round 1. This is the opposite to the round numbering system used
in most sporting contests, but is mathematically more convenient to work
with. Losers in round k gain the reward Vk, the overall winner receiving
V0, assuming that Vk ≥ Vk+1 (k = 0, .., n − 1). A population which has a
large (essentially infinite) set of such conflicts was envisaged, with sets of 2n

players selected at random from the infinite population of players. If there
were only a finite number of such tournaments then finite population size
would require a different type of analysis (see Riley, 1979 and Thomas and
Pohley, 1981).

The main advantages of the knockout model are that it breaks down a
contest between a large number of individuals into a collection of pairwise
games, has a simple structure with every individual starting from an identi-
cal position and generates a single overall winner (and a unique runner-up)
with a relatively small number of contests. This is important to minimize
injuries and unnecessary energy wastage. The hierarchy of individuals be-
comes less distinct further down the order, but in many animal societies this
is not important; the division of reproductive rights (reproductive skew, see
Vehrencamp, 1983, and Keller and Reeve, 1994) amongst communally-living
animals is often very uneven (e.g. Moehlman, 1979 and Rood, 1980), so that
the top few animals receive the vast majority of the overall pay-off. Note
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that this is not always the case (see Vehrencamp et al., 1988).

The pairwise games which were played in the knockout contest were as
follows (but could be any game which has a winner and a loser);
Suppose that in each round there are available m options labelled O1, ..., Om.
The strategy of a player specifies which option is to be used for each round
should the player progress to that round. This specification may be prob-
abilistic, involving various options in each round. The winner in a round
progresses to the next round, the loser receives a payoff appropriate to that
round and may also receive a cost; this cost and the probability of each an-
imal progressing depending upon its strategy and that of its opponent (the
Hawk-Dove game is an example of this game).

There are various versions of the knockout games which might be consid-
ered. Broom et al (2000a) considered the fixed option version in which each
player must use the same option in each round. At the other extreme (vari-
able option, in Broom et al, 2000b) players might vary their option freely
from round to round.

For the Hawk-Dove game in the fixed option case, setting Dk = Vk−Vk+1,
there is a unique ESS number of Dove players q given by

n−1∑
k=0

1− q2k+1−1

2k+1
Dn−k−1 = C

(
(1− q)− 1− q2n

2n

)
. (14)

The game can be very complex if players are able to change their strate-
gies from round to round. For two options, strategies are vectors not just
single numbers (for more than two options they are matrices rather than vec-
tors). A recursive dynamic programming method was found which specifies
all the candidate ESSs of a game. Showing when a candidate ESS is actually
an ESS is a harder problem. This was done for the 2 round case and the
method used can be generalized to more rounds, but calculations quickly
become complicated. There is an interesting correspondence between the
knockout model and the extensive two-person game of Selten (1983), which
deserves to be explored further.

The probability of playing Hawk in round k, pk, satisfies pk = mid(0, 1, zk)
where

zk+1 =
zk

2
+

Dk

C
− p2

k

2
(15)
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If we further suppose that Dk/C = b < 1, then p1 = b and it is easy to show
that zk must always lie between 0 and 1 i.e.

pk+1 = b +
1
2
pk(1− pk). (16)

TABLE 2 ABOUT HERE

This yields the expected number of violent Hawk versus Hawk contests as
shown in Table 2. The corresponding values for the fixed strategy case are
shown by way of comparison. It is clear that there is far more conflict in the
variable strategy case than the fixed strategy case, for identical tournament
structures.

The knockout model provides an example of a situation where all conflicts
in a population are pairwise, but are organized into a structure and thus
not independent. This is not necessarily a realistic model of the way natural
populations behave, but rather gives an insight into natural conflicts and
how (and in what way) behaviour may be much more complex than that
predicted by classical 2-player game theory. The dependence between games
leads to behaviour which is qualitatively different to that from contests where
the pairwise contests are independent.

It was shown in Broom et al (2000a) that there may be more or less
aggression in a population playing a contest with a knockout format than
in independent pairwise games, providing that there is no possibility of ad-
justing the strategy from round to round, depending upon the number of
players and the rewards and costs involved. In Broom el al (2000b) we see
that when there is free choice of behaviour from round to round, the level
of aggression increases the more rounds there are, and is more than for in-
dependent contests. Thus this freedom is damaging to the individuals, but
will nonetheless evolve into the population.

One disadvantage of the knockout model is that it is not realistic for a
large group of animals to form themselves into fighting pairs in such an or-
dered way. However, assuming that the outcome of each contest is observed
by every contestant, it is not unreasonable to think that a structure ap-
proximating to the knockout model might occur in some circumstances. In
addition, large groups that are stable may have already formed a hierarchy,
and groups re-forming may well have a memory of other individuals (see,
for example, Barnard and Burk, 1979). Thus the model may be most useful
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in considering groups which form for the first time. A possible scenario is
that of birds gathering at a lek (Hoglund and Alatalo, 1995).

3.4 Animal societies and multiplayer games

In Section 3 we have seen models of groups of animals that are organized
as structures of pairwise contests where the results of contests are not in-
dependent. This must surely be true of all animals which live in groups
where individuals interact over time. The dominance relationship between
a pair of animals must affect how a third animal sees itself in relation to
them. Indeed in some groups coalitions form so that games can be truly
multiplayer in character with three or more players involved simultaneously.
Possibly this starts out as a pairwise contest and then each side may obtain
allies either through the hope of gaining support in later contests or because
an animal is supporting a relative and its improved position will gain the
animal indirect fitness benefits. Such interactions are common in primate
groups, for example (see Harcourt and de Waal, 1992). This behaviour is not
restricted to dominance hierarchies, however; even more transitory group-
ings such as herds have a dynamic which is more complicated than mere
independent contests which may work best for species which are comprised
of lone animals which meet sporadically.

4 Other structured evolutionary games

This section considers games where the results of pairwise contests influence
the subsequent opportunities which an animal has so that contests are non-
independent, but where there is no finite structure of contests comprising
the overall game as in the previous section. Thus some, but not all, of the
features of a multiplayer game will be present, but there is enough similarity
to justify its inclusion.

4.1 The Finite-Horizon War of Attrition

The classical war of attrition model has assumed a contest over a single
item with a cost paid proportional to the time used; effectively postulating
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an unlimited time available to play such contests. In many real situations
however there is a finite length of time available and strategies may depend
significantly upon how much time there is to play (e.g. the brood care
example of Houston and McNamara, 1999, in section 4.2).

Cannings and Whittaker (1995) consider a population playing war of
attrition type contests where there is only a finite available time to play them
in; thus the longer is spent in a particular contest, the shorter the remaining
time to play in other contests. The model is difficult to analyze precisely and
for the sake of computability they considered a discrete-time strategy space
of total length n time units with an infinite population of individuals i.e.
each individual was only allowed to pick a single integer k which governed
the length of time it was prepared to play a contest for (regardless of the
time remaining). At each time point some contests end and individuals not
involved in a contest are repaired with others at random (there is thus a
delay of one time period between successive contests). A contest is decided
by an individual leaving due to its maximum time occurring, the reward then
going to the remaining player. Contests where both leave simultaneously or
where both are playing when the end time n is reached are drawn with the
reward shared. There is no direct time penalty for being involved in contests
(but there is the indirect one of not being able to fight in other contests).
Contests were discounted so that rewards became less valuable the later that
they were acquired.

A complex structure of equilibrium and invasion resulted from this po-
tentially simple idea and it is clear that the introduction of the fixed end
point has a huge effect. The smaller the discounting factor (so the greater
the discrepancy in value from round to round) the larger the chosen strategy
time in general (it is more valuable to win early rewards than later ones).
It is also true that for large discounting factors complex behaviour occurs,
but for a sufficiently small discounting factor there is a unique stable mix-
ture of strategies involving (1, 2, 3, . . . , n − 2, n) (i.e. all but n − 1 which is
dominated by n).

One interesting feature of this model is that players who play shorter time
lengths are involved in more contests, yet the optimal strategy in the war of
attrition is based upon meeting randomly selected opponents. Thus a player
is more likely to face a given individual playing a short time period than
one who plays a longer time period, so that to make the overall distribution
exponential, there should be a smaller number of short time length players
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than expected (random individuals play shorter time periods less often than
you would think). The other main feature is the finite time available to
play the game. This would have only an indirect effect to many games (see
the following section; Houston and McNamara, 1999) but has a more direct
impact here because of the time factor central to the war of attrition.

4.2 State-based models of adaptive behaviour

Houston and McNamara (1999) consider a range of models where behaviour
is dependent upon state, so that at any time an organism is characterized
by its state and its behaviour may depend upon this state. An animal will
make a sequence of decisions and each decision influences its state at the next
decision point, and so its next decision (and possibly its next opponent if
games are organized in such a way). An organism has a behavioural strategy
which specifies how it behaves in every possible circumstance or state.

There is a wide range of real situations which can be modelled in the
way that is proposed in Houston and McNamara (1999). We only touch on
these briefly here, since it is not a multiplayer game as such. However, the
strategy that an animal plays has a consequence for subsequent games and
so the dependence structures that exist in multiplayer structures such as the
knockout models of Broom et al (2000a, 2000b) also occurs in state-based
models. One such situation where state can be important is in the modelling
of food gathering and predator avoidance. In particular there is a trade-off
between the two risks of predation and starvation which changes with an
animal’s state, which can be characterized by its energy reserves for simplic-
ity. One of the situations considered is simply maximizing the probability of
survival (for instance over a long period involving no reproduction, e.g. win-
ter). An animal dies if it is eaten or its reserves fall to zero. The second risk
is obviously larger the smaller the reserves, so the level of predation risk that
an animal is willing to undergo for an item of food is larger if reserves are
low. Time may also complicate the issue, as if survival to the end of winter
is the aim, then as an animal’s goal approaches behaviour may well change,
so that time is also part of its state. This situation becomes game-theoretic
in nature when animals can feed in groups and spend a proportion of their
time feeding and the rest looking out for predators. The optimal strategy
depends upon various parameters such as predation rate, but also on the
strategies of other animals and an animal’s own energy reserves. Note that
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since the strategies of others depends upon their energy reserves then the
strategy of an animal depends indirectly upon the energy reserves of others.

Another example is the game of brood care and desertion. Two animals
mate to produce offspring but both need not stay to raise the brood. If both
parents leave then the offspring die, but if one stays and the other leaves the
leaver may have a chance to mate again. When is it best to leave, and when
to stay? This depends upon whether the choice is made simultaneously
or whether one partner has the opportunity to choose first (e.g. the male
may be able to desert a pregnant female). It also depends upon the length
of time into the breeding season that the decision is made; desertion may
be more profitable early on when later mating chances are more plentiful.
Thus the value of taking a particular course of action may vary with time,
so potentially altering the optimal decision. Also the animal’s state when it
makes its next decision depends upon the decision it makes here, since the
timing of its next decision depends upon this one.

The main relevance of this work to the multiplayer case is the non-
independence of subsequent opponents which is a key characteristic of the
multiplayer structures as well. The dynamic programming approach is com-
mon to both types of system and this idea is very applicable. Following
Houston and McNamara (1999) there are many examples of how such a
state-based approach can expand our understanding which will not be men-
tioned here, but for those interested in multiplayer games there is likely to
be a consistent overlap between the two areas.

4.3 Game theoretic models of kleptoparasitism

Kleptoparasitism occurs when one individual steals food from another. In-
terspecific and intraspecific kleptoparasitism are widespread amongst verte-
brates, especially birds. Ruxton and Moody (1997) developed a model of
intraspecific kleptoparasitism. Each bird could be in one of three states,
handler (with a food item), searcher (trying to find a food item or a handler
with an item) and aggressive, involved in a fight over a food item (either as a
handler or one attacking a handler). The behaviour is purely deterministic in
the sense that every individual would try to steal if given the opportunity.
Broom and Ruxton (1998) introduced a game-theoretic element, allowing
birds to choose whether to try to steal or not (and in a second model how
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to allocate their time between searching for handlers and food items). This
model is state-dependent in the sense that a decision to fight or not de-
cides whether a bird becomes an aggressive individual or remains a searcher
which then indirectly influenced later opportunities. The time spent fighting
is essentially wasted (it cannot be used to search for food) and so the more
klepotparasitism there is, the worse the population as a whole performs in
food gathering. In particular the optimal strategy of when to challenge is
found (it is best to always challenge when food levels are low, never to chal-
lenge when they are high, and there is a point of instantaneous transfer from
one state to the next), which generates a step function for the rate of food
consumption of the population, denoted by γ, which is obtained from the
expression γ = H/Pth.

The equilibrium level of H, the density of food handlers, is given by(
H

P

)2

pD +
H

P
(C + 1)− C = 0 (17)

where th is the mean handling time, ta/2 is the mean fighting time,
f is the food density, νf is the searching rate for new food items, νH is
the searching rate for handlers, p is the probability that a bird challenges
any handler that it observes and P is the total population density; C =
thfνf , D = taPνH .
Fighting is optimal and so p = 1 if tafνf < 1 otherwise p = 0 is optimal.

Later extensions have complicated analysis further by allowing birds to
know the handling status of an item (how much extra handling it requires)
and allowing for different types of food item, those which can be consumed
as they are handled and those which must be consumed only after lengthy
handling.

This model is similar to the previous ones in one key respect; the result of
a contest alters the state of the player which in turn has a bearing on which
opponent they are likely to meet next, and thus it falls within the general
remit of a state-based model, although possessing its own unique features.
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5 Discussion

In this paper we have looked at a number of multiplayer models (and related
ideas) which are applied to biology. The multiplayer war of attrition model
C provides a particularly elegant way of modelling a simple situation with
greater than two players and demonstrates how logical extensions of two-
player games to the multiplayer case need not always be highly complex and
that a complete solution can be found.

The extension of matrix games to the multiplayer case in Section 2.2
provides a very different situation to the war of attrition in that it represents
the early steps of a potentially large field. As well as the logical framework of
how to consider such games and what constitutes an ESS, only the simpler
situations, two strategies with many players and three strategies with three
players were analyzed (and the latter by no means completely) yet several
general results from two-players games are violated and it is clear that the
whole situation will be much more complex. Indeed this is one of the reasons
that the multiplayer field has been neglected for so long. Two player games
are both much simpler and (apparently at least) provide good models for
varied natural situations, so that it is perhaps unsurprising that attention
has concentrated on them.

However, pairwise interactions may also not be as simple as they seem, as
we saw in Section 3. If they take place in a group of individuals who interact
with each other then these games can form part of a complex structure where
the results of games influence each other, thus rendering them effectively
part of a more complex multiplayer game. The clearest examples of this are
the knockout models of Section 3.3 which provides a simple (but of course
simplistic) structure into which games are slotted and results determine
which games subsequently occur. More varied and complicated behaviour
occurs but there is still enough structure to obtain some results which may
generalize to other situations, for example the more freedom an animal has
to vary its strategy the more aggressive on average it will be to the detriment
of the whole group. Indeed the existence of a structure of pairwise games
makes the population more aggressive than for independent pairwise games
in this free choice case (but not necessarily in the case of fixed choices).
This is perhaps a good first point to start thinking about the possibility of
complex structures of pairwise games in different settings.

21



The structure of the round-robin of Section 3.2 is rather different in the
sense that results do not affect the opponents that are played subsequently
so that one of the key features of the structure idea is missing, that of
dependence. Which games are played and which are not (in the sense of one
of the participants backing down) are decided by outside factors and not by
previous results. In this sense it provides an extreme case of the dominance
hierarchy formation idea where the effect of the structure is at its weakest,
but the results of individual games still determine the dominance relations of
the hierarchy collectively which determines the rewards to the participants,
possibly in a very non-linear way.

Section 4 constitutes models which are not multiplayer as such, consid-
ering essentially infinite populations, rather than finite groups of greater
than two individuals, but have some of the characters of multiplayer games.
Induced dependence between games due to extra conditions such as time
constraints, as in the finite horizon war of attrition, is one such feature.
The whole idea of state as described in Section 4.2 generates the type of
structure that occurs in Section 3 and enriches our understanding of animal
behaviour by introducing more realistic features to modelling. There is a
strong parallel here with the idea of the multiplayer game.

Data investigations generally point to the kind of non-independence that
features in multiplayer models. Experimental work in the laboratory shows
that linear hierarchies are common and also that the results of successive
contests are correlated. In particular if an animal loses a contest, it is
more likely to lose a subsequent contest with this not being explicable by it
being a weaker individual (the converse is not necessarily true for winners).
Our own work predicts a similar result (losers should get less aggressive,
but winners should not necessarily be more aggressive) so that this trend
may be for logical not psychological reasons. Chase and Rohwer (1987)
modelled the interactions between groups of house sparrows, particularly
investigating triads (the results within subgroups of three individuals), and
found cycles (A dominates B dominates C dominates A) to be much less
likely than expected (see also Chase et al, 1994). Bekoff and Dugatkin (2000)
investigated these winner and loser effects for groups of young coyotes and
showed that whether such effects exist (and which type of effect) depends
upon the rank of the individual concerned. They went on to develop a
model to explain their findings. There is as yet no method for incorporating
a system for fitting data to model hierarchy formation and the analysis is
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qualitative only. However, the model of Mesterton-Gibbons and Dugatkin
(1995) uses a formation model of independent contests and so provides an
ideal null hypothesis for formation situations against which to test a variety
of more structured models.

This lack of fitted models is a consistent theme for multiplayer games at
the present time. In a sense this is very reasonable, since the extra com-
plexity of multiplayer models makes data fitting much harder. However to
make real progress in understanding this complex behaviour, such methods
must be developed.
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Table 1

Bird B1 B2 B3 B4 B5

Site S1 S2 S3 ChS1(S5) ChS2(S4)
Payoff 5.956 5.952 5.864 5.796 5.850

Bird B6 B7 B8 B9 B10

Site ChS1(S6) ChS4(S7) ChS3(S8) ChS2(S9) ChS1(S10)
Payoff 5.476 5.134 4.934 4.734 4.534

The optimal arrivals strategy when n = 10, Vi = 11− i, i = 1, . . . , 10, p =
0.4.

Table 2

n 1 2 3 4 5 6 ∞
C = 2D, Fixed 0.25 0.282 0.280 0.270 0.262 0.257 0.252
C = 2D, Variable 0.25 0.344 0.365 0.374 0.378 0.380 0.382
C = 4D, Fixed 0.063 0.078 0.079 0.072 0.064 0.056 0.041
C = 4D, Variable 0.063 0.100 0.118 0.126 0.130 0.132 0.134

The proportion of Hawk v Hawk contests over the whole conflict where
Dk = D; C = 2D and C = 4D.
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