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Abstract Kleptoparasitism, the stealing of food from one animal by another, is a

common natural phenomenon that has been modelled mathematically in a number of

ways. The handling process of food items can take some time and the value of such

items can vary depending upon how much handling an item has received. Furthermore

this information may be known to the handler but not the potential challenger, so

there is an asymmetry between the information possessed by the two competitors. We

use game-theoretic methods to investigate the consequences of this asymmetry for con-

tinuously consumed food items, depending upon various natural parameters. A variety

of solutions are found, and there are complex situations where three possible solutions

can occur for the same set of parameters. It is also possible to have situations which

involve members of the population exhibiting different behaviours from each other. We

find that the asymmetry of information often appears to favour the challenger, despite

the fact that it possesses less information than the challenged individual.

Keywords ESS · strategy · food stealing · kleptoparasitic · apple model · asymmetry

of knowledge

1 Introduction

The phenomenon of kleptoparasitism, or food-stealing, is common in animals of many

types, for example mammals [7,9], fish [10] invertebrates [13,26], and especially in

birds; see [2,8] for review papers. A good recent review over the range of species is in

[14]. There is now a significant theoretical literature on the subject [1,3,5,12,18,20,

27].
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Department of Mathematical Sciences, University of North Carolina at Greensboro, NC27402,
USA
E-mail: rychtar@uncg.edu



2

The theoretical model of Broom and Ruxton [3] is the basis for much of the recent

work in this area [15,16,6]. One of the assumptions of this and later models is that

both individuals have equal knowledge of the handling process of food items so far. If

food has been discovered at sea and is subsequently flown to feed chicks on the shore

[19], then this may be reasonable, since both defender and challenger will know the

distance to land. However, it will often be the case that potential parasites will chance

upon their victim and not know the length of handling effort that has gone into the

process, for instance with food items with tough shells which need to be breached. This

may still not affect the optimal choice of individuals if there are a variety of shells of

different toughness, so that perhaps a handler cannot tell its remaining handing time

based upon how long it has handled the food. However, there are some food types

where this information is very valuable.

This brings us on to the model of Broom and Ruxton [4] where two food types

with different properties were considered. One type, the ‘apple’, could be consumed

gradually as soon as it was found. Thus the longer it had been handled, the less

valuable it was. Searching individuals could observe the handling state and choose

whether to attack, with defenders always defending food items. Evolutionarily Stable

Strategies (ESSs) were found where behaviour was described by a single critical value;

for the apple model individuals would challenge if there was sufficient food remaining.

Here we will develop the work from [4] to consider the apple model when the defender

knows the handling time, but the challenger does not. A key question is whether this

asymmetry of information is likely to benefit the handler or its challenger.

In the following section we describe the model and how in has been developed from

the key earlier models. We go on in later sections to find the ESSs for our model.

We investigate six possible strategies, considering monomorphic populations where all

members of the population play identically, finding when each is an ESS and which of

these can coexist for identical parameters. We show that only three of these strategies

can yield monomorphic ESSs, which we shall also refer to as pure ESSs. We also find

that it is possible that there is no monomorphic ESS, and that mixtures of different

strategies are possible, with some individuals choosing to challenge and others not.

Such solutions principally occur when the defensive behaviour in a population would

vary greatly depending upon whether challenges were often or rarely made. We fi-

nally discuss the consequences of these different results both from a theoretical and a

practical perspective.

2 The Model

Following on from [3–5], we consider a population of foragers with a population density

of P . Individuals belong to one of four subpopulations, depending upon their activity.

They are either searching for food (S), handling a food item (H), fighting for food as a

challenger(C) or resisting that challenge (R). We use these labels both for the activity

and the population density involved in that activity. These activities are mutually

exclusive and every fight involves a challenger and a resister, so that R = C and

S + H + R + C = S + H + 2C = P

The rate at which searchers encounter prey items and handlers (which they can poten-

tially challenge) are νff and νhH respectively.
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Fig. 1 Transition diagram for the model in the more complex case when challenges occur.
Solid lines represent direct movements between states e.g. individuals move from S to the
initial handling position at rate νf f . Dotted lines represent a deterministic transition through
the handling states; if uninterrupted by challenges an individual covers a distance [1] down the
handling line per unit time, until it reaches 0 when it instantaneously moves to S. In this case
handlers resist if and only if the value of the food item is at least xY .

We define H(x) as the population density (strictly the density function of the

density) of handlers with a food item which has remaining handling time x, so that

th represents newly found items. When handling progresses undisturbed, the handing

state changes with time, so that after length of time t has elapsed, a newly found food

item moves from H(th) to H(th − t). When a handler reaches state H(0) handling is

completed, and it resumes being a searcher.

The time is the inner characteristic of the individual food item and it can be

regarded as the actual size of the item (visible to the handler only). The size (and the

time) decreases from th for a whole item to 0 when the item is already eaten. Arriving

at time t means that the item is of such a size that it would take time t to eat it (if

undisturbed by any fights). Also the time for the item ”stops” when two individuals

fight over the item (as during that time, the size of the item remains constant).

When a forager finds a handler it may decide to challenge for the food item (or not)

and the challenged handler may decide to resist the challenge (or not). When a contest

occurs, it takes place for an exponential time of mean duration ta/2. The forager moves

to state C(x) and the handler to R(x). The challenger wins and becomes a handler in

state H(x) (the defender becoming a searcher) with probability α, and otherwise the

defender wins, becoming the handler in state H(x), and the challenger resumes being

a searcher. If there is no challenge there is no change in the states, and if a challenge

is not resisted the challenger and handler swap states with no time lost. A summary

of the key transition rates of the model is given in Figure 1.

It was shown in [4] that if the population is in equilibrium, then the handlers would

be uniformly spread between the range of handling states from th to 0, since each item

has to pass through each of the stages before being consumed, and this is also true

for the different stages of the contesting states R and C. Thus, challengers are equally

likely to find food items in all states of being handled. In our model, like previous ones

such as [3–5], there is a balance between transitions from fighting states (C and R) to
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non-fighting states (S and H) and between non-fighting states so that

H = νffthS (2.1)

Handlers are aware of how much of their food item remains, and they are able to

surrender it if challenged. Searchers can challenge for a food item, but do not know its

value prior to making a challenge; thus there is asymmetric information. Challengers

make a decision to challenge based upon no knowledge of the value of the food item

challenged for, whereas defenders will have a precise knowledge of the handling time

elapsed.

An individual’s strategy can be summarised as a pair. Firstly, since as a searcher, it

cannot observe the current handling state of its potential victim, it must simply decide

whether to challenge (Y) or not (N). Secondly as a handler, it must decide which food

items are worth defending; it will decide food items are worth defending if and only if

they are worth above a certain value. Thus individuals’ strategies are labelled (N, x) or

(Y, x). We look for evolutionarily stable strategies; in particular we will find the optimal

value of x, xY , when the population challenges, and then check for stability against

a non-challenging mutant individual. We do the same for the optimal value of x, xN ,

for a non-challenging population, and then check for stability against a challenging

mutant. The value of xN (or xY ) may be equal to either th or 0, and we will write in

terms of finding solutions (N, th), (N, 0) or (N, xN ), where the third of these implies

a value such that 0 < xN < th (and similarly for challenging populations and xY ).

When there are no challenges the uptake rate of the population, which is equal to

H/P , is the maximum possible and it is given by the Holling ratio [11]

hH =
νffth

1 + νffth
(2.2)

If every searcher-handler encounter results in a fight, the uptake rate is hr, the

positive root of

h2
rtaνhP + hr(1 + thνff)− νffth = 0 (2.3)

We assign a value of th to a food item; thus since the item takes precisely this time

to handle, the mean consumption rate during handling is 1 (in fact this is the actual

rate, since food is consumed continuously at constant rate). Thus in each case the

handling ratio h = H/P is also the mean consumption rate of the population. We shall

also use the following notation to summarise the important collections of parameters

b and γ which feature in our solutions.

b =
νhP

νffth
(2.4)

γ =
taνff

2(1− α)
(2.5)

γ is the ratio of the rate of finding food as a searcher and the rate of moving back

to the handling position as a defender in a contest, and is thus key to the decision

on whether to defend an item or not. It has featured as a key parameter in a number

of earlier papers, including [3,5]. The parameter b can also be expressed as the ratio

νhS/(H/P ) the ratio of the rate that a given handler is found by potential challengers

and the overall rate of reward in the population, which is again important for decisions

of attack and defence.
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3 Results

3.1 Summary

There are six potential solutions which are (N, th), (N, xN ), (N, 0), (Y, th), (Y, xY ) and

(Y, 0). As it becomes less valuable to be holding an item nearer to the end of the han-

dling period, xN and xY represent the critical remaining handling time, when defence

occurs if and only if the remaining time is longer than this. Note that for populations

which contain only non-challenging individuals, we still consider the strategy of when

to defend against occasional challenging mutants, imagining a continuous supply of

such individuals at very low frequency.

The strategies (N, th), (N, 0) and (Y, 0) are never stable. If every individual in

the population adopted the strategy (N, th), there would never be fights, and so a

mutant challenger would always invade. If every individual adopted (N, 0) or (Y, 0),

the individuals would be willing to fight for items of zero value, and so individuals

playing higher values of xN or xY would invade.

3.1.1 Strategy (N, xN )

(N, xN ), 0 < xN < th, is in equilibrium with respect to a change in critical defensive

time if

γ < 1 (3.1)

where the equilibrium value of xN is given by

xN = γth (3.2)

This is stable against invasion by a mutant challenger if

3γ2 − 2γ +
α

1− α
< 0 (3.3)

If (3.3) holds then clearly (3.1) must also hold, and thus (3.3) is the sole condition for

(N, xN ) to be an ESS. Note that if there are never any challenges, the defensive strategy

would of course be irrelevant. We assume that there will be a low level of challenges

even in a nominally non-challenging population, either as a result of occasional mutant

challengers or behavioral aberrations by some individuals. This seems reasonable for

any real populations with the potential to challenge, and any such very low level is

enough to maintain a unique defensive strategy.

3.1.2 Strategy (Y, th)

(Y, th) is stable against a change in critical defensive time if

γ >
1− exp(−thνhP/(1 + thνff))

thνhP/(1 + thνff)
=

1− exp(−thbhH)

thbhH
(3.4)

and is always stable against a mutant non-challenger, since handlers never resist.
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3.1.3 Strategy (Y, xY )

(Y, xY ), 0 < xY < th, is in equilibrium with respect to a change in critical defensive

time if„
b +

1

tah2

«
th exp

„
−hbth +

(1 + thνff)(hH − h)

tahνff

«
− γbh(2− h)

(1− h)2νff
> 0 (3.5)

where h is a solution of

1− exp

„
−hbth +

(1 + thνff)(hH − h)

tahνff

«
− γh2b

(1− h)νff
= 0 (3.6)

and the equilibrium value xY is given by

xY = th −
(1 + thνff)(hH − h)

btah2νff
(3.7)

This is stable against a mutant non-challenger if

γ

 
1 +

1− exp
`
−α(th − xY )bh

´
α
`
exp(xY bh)− 1

´ !
< 1 (3.8)

3.1.4 A mixture of Challengers and Non-challengers

If (3.1) holds but (3.3) does not (so that the potential non-challenging solution is un-

stable against individuals which challenge), (3.5) holds but (3.8) does not (so that

the potential challenging solution is unstable against individuals which do not chal-

lenge) and (3.4) does not hold, then there is no pure ESS. Here challengers invade

non-challengers and non-challengers invade challengers so that we will have a mixture

of such individuals in the population. Whenever these conditions occur, there is an

equilibrium mixture where both groups employ the same defensive strategy.

3.2 Combinations of solutions and the influence of the parameters

Figure 2 shows the possible patterns that can occur in a challenging population. We

can see that there can be at most one value xY < th so that the strategy (Y, xY ) is

stable; and the strategy (Y, th) can be stable as well. There is a total of three possible

pure strategy solutions (N, xN ), (Y, xY ) and (Y, th). We can see in Figure 3 that all

eight combinations of these solutions are possible. For parameters such that α < 1/4,

P is large and ta
2 is slightly bigger than

“
1
3 −

q
1
9 −

α
3(1−α)

”
1−α
νf f all three ESSs occur,

and for parameters such that α < 1/4, P is relatively small and ta
2 only slightly bigger

than
“

1
3 +

q
1
9 −

α
3(1−α)

”
1−α
νf f none of them occur.

Note that for N strategies to be stable there is quite a small region, so the asym-

metry of knowledge with the defender knowing more seems to lead to an advantage to

the challenger, with solutions of types (Y, xY ) and (Y, th) occurring for a wider range

of parameters than (N, xN ).

The parameter range of the different solutions is not always straightforward. The

non-challenging solution (N, xN ) can only occur for sufficiently small challenger win-

ning probability α (e.g. as in Figure 3). It also requires intermediate values of fight time
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Fig. 2 The schematic graph of the function on the left hand side of (3.6) and its relationship
to the stability of the value xY (the values xY is increasing with h by (3.7)) where hH is the
Holling handling ratio and thus the maximum possible value of h. When a function is positive,
defending longer is optimal and vice versa. As the parameter ta

2
grows, one gets a) one stable

root xY < th (hs < hH), b) one stable root xY < th and another stable state th, c) only one
stable state th.

(N,xN )

(Y, xY )

(Y, xY )

(Y, xY ), (Y, th)

(Y, th)

(Y, xY ), (Y, th)
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2
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Fig. 3 The regions of ESSs. The grey triangular region is a region with no pure ESS. The
regions are for parameter values th = 1, νh = 1, νf f = 1, α = 0.2.

ta/2 and foraging rate νff ; if fights are short or the foraging rate low then it is worth

challenging even if the probability of success is low, and if they are high it is also worth

challenging because a challenged individual is unlikely to defend its item. Interestingly,

the population density P has no effect on the existence of this solution, as in any such

population the only fights will be caused by mutant individuals. Population density

does, however, affect the existence of the other solutions; the denser the population,

the more challenges an individual can expect to face. The challenging and no resisting

solution (Y, th) occurs for sufficiently dense populations, sufficiently large fighting time

and sufficiently low foraging time. It is also more likely to occur when the probability of

the challenger winning is larger. The challenging strategy where individuals will defend
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sufficiently good food items (Y, xY ) occurs for sufficiently low fight times, but also for

high ta
2 and low population density. Most of these results are individually intuitive,

although the possible combinations of solutions and the complex shape of Figure 3

are not. Previous models, such as those from [16] had several possible combinations of

solutions, but the behaviour in this model is surprisingly rich, with only small changes

in parameter values being able to lead to a range of different combinations of solutions.

4 Analysis

4.1 General method

Let h(Σ, x; Σp, xp), denote the long term foraging rate (i.e. expected food consumption

divided by the total time used) of an individual using a strategy (Σ, x) in the population

where everybody else uses a strategy (Σp, xp). Here Σ ∈ {Y, N} is the challenging

strategy and x ∈ [0, th] is the defending strategy. We are looking for evolutionarily

stable strategies which are pairs (Σp, xp) such that if every individual in the population

adopts such a strategy, it is then the optimal strategy, i.e.

h(Σ, x; Σp, xp) < h(Σp, xp; Σp, xp)

for any (Σ, x) 6= (Σp, xp) (in fact when Σp = N all defensive strategies do equally well

in the absence of challenges, and so we allow a very small background level of mutant

challenges).

Thus, given (Σp, xp) we need to consider the optimal invading strategy (Σo, xo)

such that

h(Σo, xo; Σp, xp) = max{h(Σ, x; Σp, xp), Σ ∈ {Y, N}, x ∈ [0, th]}

We will see in the subsequent sections that formulae for h(Σ, x; Σp, xp) can be

complicated and finding the maxima of these functions can be commensurably difficult.

Thus, we introduce an additional measure and show how to use it to find the optimal

strategy. Let Rc(Σ, x; Σp, xp) denote the average feeding rate of an individual during

and after the challenge that arrived at time t just slightly larger than x, up until the

end of its interaction with that particular food item. Clearly, Rc(Σ, x; Σp, xp) does not

depend on an individual’s challenging strategy and thus whenever the strategy of the

population will be clear from the context, we will use Rc(x) only. In more detail, Rc(x)

is the amount of food eaten divided by the total amount of time during the event that

starts by a challenge at time t > x, t ≈ x, continues by a fight (for an average time

ta/2) and, in the event of the handler winning the fight, continues with the handler

eating the food item until the item is eaten in full or the handler is challenged again

(when it immediately concedes without a fight).

Universal principle: Let the population consist of individuals using strategy (Σp, xp)

and let one individual use a challenging strategy Σ. If xo is the optimal defensive

strategy the individual can use, then

xo ≥ x if and only if h(Σ, x; Σp, xp) ≥ Rc(x). (4.1)

To understand the principle, note that Rc(x) does not count the consumption before the

encounter. What matters is that right now at time t ≈ x the individual is challenged
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and it should decide whether it is worth defending (yielding feeding rate Rc(x)) or

giving up (yielding feeding rate h(Σ, x; Σp, xp)).

If h(Σ, x; Σp, xp) < Rc(x), then the individual is better off entering the contest than

conceding it at x, and indeed also after some small further depletion of the resource.

Consequently, xo < x. If h(Σ, x; Σp, xp) > Rc(x), the individual is better off conceding

than entering the contest at x, and indeed should concede if challenged a little sooner

than at x. Thus, xo > x.

A direct consequence of the universal principle is that, for the optimal value,

h(Σo, xo; Σp, xp) = Rc(xo) (4.2)

In order to check that a given strategy (Σp, xp) is an ESS, we need to consider

optimal defending for an individual using challenging strategy Σp and also for an

individual using challenging strategy Σ 6= Σp. The first means that the defending

strategy is optimal, i.e. the value x is stable against its change. Using the universal

principle and (4.2), the necessary condition for it is

h(Σp, xp; Σp, xp) = Rc(xp) (4.3)

This condition is necessary, but not always sufficient. For the case Σp = N we will see

that it is sufficient, as it is not possible to have more than one root of the equation

(4.3). However, when Σp = Y , there can be two, but no more than two, roots of (4.3)

(see Figure (2)). When there are two roots, the lower one is stable and the higher

unstable, so that finding the smallest xp > 0 which satisfies (4.3) always gives the

unique optimal value.

In the population of non-challengers using strategy (N, xp), a single challenger will

not be challenged itself and thus its defensive strategy is irrelevant. In the population of

challengers using strategy (Y, xp) where xp is stable against its change, the individual

(N, xo) invades if and only if h(N, xo; Y, xp) > h(Y, xp; Y, xp) which, by (4.2) and (4.3),

happens if and only if Rc(xo) > Rc(xp). Clearly, Rc is monotone in x (the expected

uptake rate over the duration of an item which will never subsequently be defended

after the first attack is clearly increasing with the size of the item at the moment the

attack occurs; see also (4.6) below), and thus (N, xo) invades if and only if xo > xp

which is by the universal principle (4.1) equivalent to h(N, xp; Y, xp) > Rc(xp). It

means that we need to consider invasion by (N, xp) individuals only.

4.2 Feeding rate during the contest at the critical time

Assume that the density of challenging searchers in the population is SC and consider

an individual using strategy (Y, x) or (N, x) that defends the item until time x. Assume

it is currently handling a food item and that it has been challenged at time t ≈ x, t > x.

We will calculate its feeding rate during this contest which is the total amount of food

eaten divided by the total amount spent by eating and fighting for it.

The individual engages in a fight for an average time ta
2 . It wins the fight with

probability (1 − α) and resumes eating. From that moment, challenges arrive to the

handler as a Poisson process of rate νhSC .

When SC > 0, the expected amount of food consumed (and time taken to consume

it) until the handler is finished or found by a searcher is given by

EF (t) = t · Pr(not found at all) +

Z t

0
τPr(found at time t− τ)dτ
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= t

Z ∞
t

exp(−νhSCτ)νhSCdτ +

Z t

0
exp(−νhSCτ)νhSCτdτ

= t exp(−νhSCt) +

„
−t exp(−νhSCt) +

Z t

0
exp(−νhSCτ)dτ

«
=

1

νhSC
(1− exp(−νhSCt)) (4.4)

where the second use of Pr() above is a probability density function (of the time at

discovery). Note that when SC ≈ 0,

EF (t) ≈ t (4.5)

Since t ≈ x, then when our individual is found again, it will not resist but give

up the food. Consequently, from the event of being challenged at time t ≈ x, the

handler spends time ta/2 fighting and possibly (with probability (1 − α)) additional

time EF (x) eating (terminated by the next challenge, which is not resisted, or complete

consumption of the food item); and at the same time, it eats EF (x) amount of the

item. Thus its feeding rate is

Rc(x) =
(1− α)EF (x)

(1− α)EF (x) + ta
2

(4.6)

4.3 The long term foraging rate

4.3.1 Homogenous populations

If there are no challengers in the population (or SC ≈ 0), the foraging rate will be the

Holling handling ratio from (2.2). In the population where everybody adopts a strategy

(Y, x), the handlers defend their food with the probability 1− x
th

and thus, by e.g. [6],

the long term handling ratio is the positive root of

h2taνhP

„
1− x

th

«
+ (1 + thνff)h− νffth = 0 (4.7)

if x < th (and is otherwise the Holling ratio), which gives equation (3.7). It follows

that
−hxνhP

thνff
=

th
tah

−
1 + thνff

taνff
− h

νhP

νff

4.3.2 A single non-challenger amongst challengers

Let us consider an individual using a strategy (N, x) in the population where the density

of searching challengers is SC (the defensive strategy of challengers, xp is irrelevant for

this calculation and can be arbitrary). The individual finds food at rate νff , and this

food is completely unhandled, and so worth th. Challenges then occur at rate νhSC . If

the individual still has the food at time x, then from that moment, by (4.4),

EF (x) =
1− exp(−νhSCx)

νhSC

is eaten, on average, and no time is lost by fighting (if a challenge occurs, the individual

surrenders the food).
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Before time x, the handler fights and wins the fight with probability (1− α), thus

successful challenges occur at rate αSCνh, and so the individual still has food at time

x with probability

pc(x) = 1−
Z th−x

0
αSCνh exp(−αSCνhτ)dτ = exp

`
−αSCνh(th − x)

´
The expected gain in food from the beginning of handling up to time x is

EI(x) = (th − x)pc(x) +

Z th−x

0
τPr(lost at th − τ)dτ

= (th − x) exp
`
−αSCνh(th − x)

´
+

Z th−x

0
ταSCνh exp(−αSCνhτ)dτ

=
1− exp(−αSCνh(th − x))

αSCνh

where as before, the expression using Pr() is a probability density function. Finally

given an individual has spent an average time EI(x) handling when subject to potential

challenges that it will resist, and such challenges occur at rate νhSC , it has spent, on

average, the time

tI(x) = νhSC
ta
2

EI(x)

resisting.

The feeding rate for this individual is thus

h(N, x; Y, xp) =
EI(x) + pc(x)EF (x)

(νff)−1 + EI(x) + tI(x) + pc(x)EF (x)

4.4 A non-challenging population

The strategy (N, 0) is never optimal. If it were, by (4.3), the feeding rate at that

population would be

h(N, 0; N, 0) = Rc(0) = 0

which is a contradiction of the fact that the feeding rate is the (nonzero) Holling ratio.

Now consider the strategy (N, x), 0 < x ≤ th. By (4.3), it is stable against a change

in the defensive time if

h(N, x; N, x) = Rc(x)

where, by (4.6) and (4.5)

Rc(x) =
(1− α)x

(1− α)x + ta/2

Since h(N, x; N, x) = hH =
νf fth

1+νf fth
, it is best to fight if x > min{1, γ}th. If γ > 1 the

feeding rate from defending is always worse than the average foraging rate, and food

should be discarded at any challenge, no matter its value i.e. choose xN = th.

In order to find out whether challenging among non-challengers using strategy

(N, x) is beneficial, we do not need to know the long term feeding rate of the challenger.

All we need is an expected feeding rate from the beginning of a random challenge. First

realize that (N, th) is never stable. Indeed, if food is always surrendered, an individual
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who always challenges will invade, since any challenge presents them with free food,

and an uptake rate of 1 for the interaction. We may thus consider 0 < x < th only.

With probability (th−x)/th there will be a fight costing time ta/2, and the reward

will be won, and subsequently kept, with probability α. With probability x/th the

handler will give the food up immediately, and there will be no time lost. The expected

food gained through such a contest is

α

„
(th − x)

th

«
th + x

2
+

x

th

x

2
=

1

2th
(αt2h + (1− α)x2)

The expected time taken is this plus the expected extra contest time, giving

1

2th
(αt2h + (1− α)x2) +

th − x

th

ta
2

Challenging is not beneficial if the challenger feeding rate is greater than the Holling

ratio (2.2), the rate that would result from non-challenging, i.e. if

νffth
1 + νffth

>

αt2h+(1−α)x2
N

2th

ta
2

“
1− xN

th

”
+

αt2h+(1−α)x2
N

2th

which rearranges to

3γ2 − 2γ +
α

1− α
< 0

which is condition (3.3). Thus condition (3.3) together with γ < 1 is required for

stability. Note that the above inequality is equivalent to

(3γ − 1)2 <
1− 4α

1− α

We thus need α to be small and γ to take intermediate values (the largest range of α

when this condition is satisfied occurs when γ = 1/3). In particular if either α > 1/4

or γ > 2/3 stability cannot occur.

4.5 A challenging population

Similarly to the case of the strategy (N, 0), the strategy (Y, 0) is never optimal. If it

were, by (4.3), the feeding rate at that population would be

h(Y, 0; Y, 0) = Rc(0) = 0

which is contradicted by the fact that the feeding rate is, by (2.3), h(Y, 0; Y, 0) = hr > 0.
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4.5.1 The strategy (Y, th)

Since handlers are giving up the food whenever challenged, there are no fights in this

population, and we have a situation similar to that of the Marauder strategy in e.g. [5,

6]. Since P = S + H, from (2.1) and (2.2) it follows that S = P
1+νf fth

, and thus, by

the universal principle, for stability against lower xY values we require

hH ≥ Rc(th)

By (4.6) and (4.4) it yields

νffth
1 + νffth

≥
1

νhS

`
1− exp(−νhSth)

´
(1− α)

1
νhS

`
1− exp(−νhSth)

´
(1− α) + ta

2

which can be rearranged to

νff
ta
2
≥ 1− exp(−νhSth)

νhSth
(1− α)

which is condition (3.4). It is clear that (Y, th) is always stable against a mutant non-

challenger, since handlers always give up their food, so that challenging is optimal.

4.5.2 The strategy (Y, x), x < th

By (4.3), the value x is stable against its change if

h(Y, x; Y, x) = Rc(x).

By (4.6) and (4.4) again

Rc(x) =

1
νhS

`
1− exp(−νhSx)

´
(1− α)

1
νhS

`
1− exp(−νhSx)

´
(1− α) + ta

2

and combining the above two equations with (3.7) and (2.1) yields

1− exp

„
th

tah(x)
−

1 + thνff

taνff
− h(x)

νhP

νff

«
=

ta
2 h(x)2νhP

(1− h(x))(1− α)νffth
(4.8)

which can be rearranged to give (3.6). In fact this solution is stable against changes

in defensive strategy if the derivative of the left hand side of (3.6) is positive at the

specified root (see Figure (2)), which yields (3.5).

Next, we must consider when (Y, xY ), xY < th is stable against an invasion of a

mutant (N, x). The feeding rate, h(N, x; Y, xY ), is given by

h(N, x; Y, xY ) =
EI(x) + pc(x)EF (x)

1/νff + EI(x) + tI(x) + pc(x)EF (x)

Using the universal principle, the mutant does not invade if and only if

h(N, xY ; Y, xY ) < Rc(xY )

This implies that

ta
2(1− α)

“
νhSEI + νhSpEF

”
<
“
1− exp

`
−(νhS)xY

´”“ 1

νff
+

ta
2

SνhEI

”
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which rearranges to

1 >
taνff

2(1− α) α

„
α(1− exp(−xY bh)) + exp(−xY bh)(1− exp(−α(th − xY )bh)

1− exp(−xY bh)

«
= γ

„
1 +

exp(−xY bh)(1− exp(−α(th − xY )bh)

α(1− exp(−xY bh))

«
which is condition (3.8).

Let us now investigate the number of possible solutions of (3.6) and the conse-

quences to the existence of stable ESSs. The right hand side of (4.8) is convex, starting

at 0 for h = 0 and ending at ∞ for h = 1. The left hand side is concave, starting at

−∞ for h = 0 and ending at 1 for h = 1. This means that there are either two roots

or there are none (except on a specific coincidence of parameters). Also, from (4.7) it

follows that if we consider xY as a function of h, then it is an increasing function.

It is possible there is no solution of (4.8), which corresponds to (Y, th) being the

ESS (see Figure 2c). If there are two solutions h1, h2 of (4.8), we have one of the

following three cases

i) hH < h1 < h2,

ii) h1 < hH < h2,

iii) h1 < h2 < hH .

Substituting hH for h in (3.6) yields equality in (3.4). Consequently, if (3.4) holds, we

have either case i) or iii); and we can get case ii) only if (3.4) does not hold. Since the

Holling ratio, hH , is the maximal handling ratio, the solutions larger than this ratio are

of no interest to us. Moreover, positive values of the left hand side of (3.6) correspond

to lower values of xY being favourable and, vice versa, negative values correspond to

higher values of xY being favourable. Hence, the root h2 is either unrealistic (in case

ii)) or unstable (in case iii)). Consequently, we can have only one stable (Y, xY ) with

xY < th which will be h1 in either ii) (see Figure 2a) or iii) (see Figure 2b); however,

we can have both (Y, xY ), xY < th and (Y, th) being stable (Figure 2b).

4.6 A mixture of challengers and nonchallengers

As seen at Figure 3, there are cases with no ESS. Specifically, if (3.1) holds but (3.3)

does not (so that challengers can invade any non-challengers adopting a stable de-

fensive strategy), (3.5) holds but (3.8) does not (so that non-challengers can invade

any challengers adopting a stable defensive strategy) and (3.4) does not hold, then

there is no pure ESS. In such a situation we will have a mixture of individuals in the

population. For any such mixture to be in equilibrium, both groups would have to

perform equally well. This in turn means, by the universal principle, that the value of

xY must be equal to xN at equilibrium; in other words, all individuals would have to

use the same defensive strategy. Whenever (3.3) is not satisfied challengers do better

in a population wholly consisting of non-challengers and whenever (3.8) is not satisfied

non-challengers do better in a population consisting wholly of challengers. Considering

any population combined of challengers and non-challengers, if we slightly alter the

proportion of challenging individuals, this will correspondingly alter the equilibrium

defensive strategies xN and xY , and hence the uptake rate of challengers and non-

challengers by a small amount. Thus these uptake rates are continuous as a function

of the proportion of challengers, and so there will be a mixture where the two perform
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equally well. It is clear that there is an equilibrium within this region (and indeed in a

larger region). Note that we have not been able to prove that this solution is unique,

or that it is stable.

5 Discussion

Kleptoparasitic behaviour takes a number of forms amongst its most visible con-

stituency, that of seabirds. From the interspecific parasitism where individuals are

clearly divided into parasites and potential victims as typified in [22] to intraspecific

parasitism where individuals can move interchangably between the two, which is the

focus of our model. This intraspecific behaviour can take different forms, varying from

mainly ground-based competition with a strong spatial element [24], [21] to aerial con-

tests involving potentially many individuals [23]. In each case, there is a variety of key

parameters which determine behaviour, for instance the availability of food [25], the

duration of contests or the population density [16,23]. In this paper we have looked

at kleptoparasitic models from a new perspective, that of imperfect and asymmetric

information amongst the competitors for food. Thus in this paper we effectively get

mixed defensive strategies not usually seen in previous work because of the different

values of the food items at the time that a defensive choice is made, since defenders

will decide that some items are worth defending and others are not. The assumption is

that the individual handling the food will have greater information about the item in

question than any challenger. The handlers of food items appear at first sight to have

an advantage because of the extra information that they possess about the value of the

food. In fact the model often predicts the reverse, i.e. the handlers have a disadvantage

as a result of the extra knowledge of the food item size since this knowledge often leads

to the small items being conceded by the handler, providing free food to the challenger.

Considering our model of continuous food consumption, there are four possible

solutions identified, three of which are pure ESSs. There is a solution (N, xN ) where

nobody challenges, another solution (Y, th) where all challenge and there is no resis-

tance and one solution (Y, xY ) where all challenge and there is defence of sufficiently

valuable food items. It is interesting to see that for some parameter values all of these

strategies can be ESSs simultaneously, so that which occurs in practice will depend

upon the history of the system, and that a small change in parameter values can re-

sult in various combinations of solutions in quite a small range. It is worth noting

that all eight possible combinations of these solutions (including none of them as pure

ESSs) can occur for plausible parameter values. When there is no such ESS, even more

complex behaviour with some individuals challenging and others not emerge.

Some of our results are consistent with previous models, for instance the solution

(Y, th) is essentially the Marauder strategy of [15] and again occurs for dense enough

populations or large fight times. The other two strategies contain defensive strategies

which are analogous to mixed strategies, in the sense that sometimes the defender

resists and sometimes not, and when this occurs is unknown to the challenger. The

general relationship between the critical defensive time and the parameters resembles

the critical attacking time from [4], in that in both cases fights are generally less likely

the denser the population or the more costly fights are, but the complex interplay of

the different types of solution is distinct. One implication for real populations is that

behaviours that are quite different may not be the result of different environmental

conditions or properties of the species involved, but rather because different solutions
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are available, and which is selected is due to chance and past conditions. Thus the

investigation of potentially different food types and strategic behaviour extends the

range of possible natural observations that our models can predict. An interesting

prediction of the model regards the circumstances when the non-challenging solution

(N, xN ) occurs. This happens for intermediate values of foraging rate or contest time,

provided that the chance of the defender successfully keeping the food in a contest is

sufficiently high, with challenging occurring at either extreme (for large contest time

or very easy food availability challenges happen because defenders will simply concede

rather than fight). This will be an interesting prediction to test in real populations.

There are various ways this model can be extended. One natural extension is to

consider food items of varying initial size, where the distribution of these sizes could be

expected to play a critical role. More generally, in the contests in this paper, individuals

are able to challenge or not, and resist or not, but then they have no option to change

their strategy based upon information acquired after the start of the contest. Such

information as discovering the value of the food item, or the strategy of its opponent,

could affect the individual’s assessment of its best strategy, and thus make it change its

decision if it was able to do so. Thus there could be a sequence of potential decisions

to consider, which could be a continuum, and the effect of asymmetric information in

such kleptoparasitic contests is potentially complex.

References

1. Barnard, C.J., Sibly, R.M. Producers and scroungers: A general model and its application
to captive flocks of house sparrows, Anim. Behav. 29, 543–555 (1981)

2. Brockmann, H.J., Barnard, C.J. Kleptoparasitism in birds, Anim. Behav. 27, 487–514 (1979)
3. Broom, M., Ruxton, G.D. Evolutionarily Stable Stealing: Game theory applied to klep-

toparasitism, Behav. Ecol. 9, 397–403 (1998)
4. Broom, M., Ruxton, G.D. Evolutionarily stable kleptoparasitism: consequences of different

prey types, Behav. Ecol. 14, 23–33 (2003)
5. Broom, M., Luther, R.M., Ruxton, G.D. Resistance is useless? - extensions to the game

theory of kleptoparasitism, Bull. Math. Biol. 66, 1645–1658 (2004)
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