153 research outputs found

    Reduced Protein Expression of the Na+/Ca2++K+-Exchanger (SLC24A4) in Apical Plasma Membranes of Maturation Ameloblasts of Fluorotic Mice

    Get PDF
    Exposure of forming enamel to fluoride results into formation of hypomineralized enamel. We tested whether enamel hypomineralization was caused by lower expression of the NCKX4/SLC24A4 Ca2+-transporter by ameloblasts. Three commercial antibodies against NCKX4 were tested on enamel organs of wild-type and Nckx4-null mice, one of which (a mouse monoclonal) was specific. This antibody gave a prominent staining of the apical plasma membranes of maturation ameloblasts, starting at early maturation. The layer of immuno-positive ameloblasts contained narrow gaps without immunostaining or with reduced staining. In fluorotic mouse incisors, the quantity of NCKX4 protein in ameloblasts as assessed by western blotting was not different from that in non-fluorotic ameloblasts. However, immunostaining of the apical plasma membranes of fluorotic ameloblasts was strongly reduced or absent suggesting that trafficking of NCKX4 to the apical membrane was strongly reduced. Exposure to fluoride may reduce NCKX4-mediated transport of Ca2+ by maturation stage ameloblasts which delays ameloblast modulation and reduces enamel mineralization

    A comparison of psoriasis severity in pediatric patients treated with methotrexate vs biologic agents

    Get PDF
    This cohort study compares the use of methotrexate vs biologic agents in children with moderate to severe psoriasis. Question What is the association between use of methotrexate vs biologics and psoriasis severity and drug survival (rate and duration of adherence to a specific drug regimen) in pediatric patients with moderate to severe psoriasis? Findings In this cohort study including 234 pediatric patients with moderate to severe psoriasis, those receiving biologics were more likely than those treated with methotrexate to achieve a Physician Global Assessment status of clear/almost clear and 75% or more improvement of the Psoriasis Area and Severity Index rating at 6 months. In addition, biologics were associated with better drug survival rates at 1, 3, and 5 years, with comparable discontinuation rates owing to lack of response. Meaning In pediatric patients with psoriasis, treatment with biologics may be associated with a significantly greater reduction in psoriasis severity than methotrexate; nevertheless, with 35.6% of the patients achieving clear/almost clear and 40.0% reaching 75% or more improvement on the Psoriasis Area and Severity Index, methotrexate remains an effective treatment for pediatric psoriasis. Importance Few studies have compared the use of methotrexate and biologics, the most commonly used systemic medications for treatment of moderate to severe psoriasis in children. Objective To assess the real-world, 6-month reduction in psoriasis severity and long-term drug survival (rate and duration of adherence to a specific drug) of methotrexate vs biologics in plaque psoriasis in children. Design, Setting, and Participants A retrospective medical records review was conducted at 20 European and North American centers. Treatment response was based on site-reported Psoriasis Area and Severity Index (PASI) and/or Physician Global Assessment (PGA) scores at baseline and within the first 6 months of treatment. Participants included all 234 consecutively seen children with moderate to severe psoriasis who received at least 3 months of methotrexate or biologics from December 1, 1990, to September 16, 2014, with sufficient data for analysis. Data analysis was performed from December 14, 2015, to September 1, 2016. Main Outcomes and Measures PASI, with a range from 0 to 72 (highest score indicating severe psoriasis), and/or PGA, with a scale of 0 (clear), 1 (minimal), 2 (mild), 3 (moderate), 4 (severe), and 5 (very severe). Results Of 234 pediatric patients (103 boys [44.0%]; 131 girls [56.0%]) treated with methotrexate and/or biologics, 163 patients (69.7%) exclusively received methotrexate, 47 patients (20.1%) exclusively received biologics, and 24 children (10.2%) received methotrexate and biologics sequentially. Of the latter cohort, 23 children were treated initially with methotrexate. Mean (SD) age at initiation was 11.6 (3.7) years for methotrexate and 13.3 (2.9) years for biologics (73.2% for etanercept) (P = .002). Among patients evaluated by a scoring method at 6-month follow-up, 75% or greater improvement in PASI (PASI75) was achieved in 12 of 30 patients (40.0%) receiving methotrexate and 20 of 28 patients (71.4%) receiving biologics, and PGA was clear/almost clear (PGA 0/1) in 41 of 115 patients (35.6%) receiving methotrexate and 18 of 37 patients (48.6%) receiving biologics. Achieving PASI75 and/or PGA 0/1 between baseline and 6 months was more likely with biologics than methotrexate (PASI75: odds ratio [OR], 4.56; 95% CI, 2.02-10.27; P < .001; and PGA 0/1: OR, 2.00; 95% CI, 0.98-4.00; P = .06). Decreased mean PASI and PGA scores were associated with biologics more than with methotrexate (PASI effect, -3.13; 95% CI, -4.33 to -1.94; P < .001; and PGA effect, -0.31; 95% CI, -0.56 to -0.06; P = .02). After 1, 3, and 5 years of use, overall drug survival rates for methotrexate were 77.5%, 50.3%, and 35.9%, and for biologics, the rates were 83.4%, 64.3%, and 57.1%, respectively. Biologics were associated with a better confounder-corrected drug survival than methotrexate (hazard ratio [HR], 2.23; 95% CI, 1.21-4.10; P = .01). Discontinuation owing to lack of response was comparable (HR, 1.64; 95% CI, 0.80-3.36; P = .18). Conclusions and Relevance Methotrexate and biologics appear to be associated with improvement in pediatric psoriasis, although biologics seem to be associated with greater reduction in psoriasis severity scores and higher drug survival rates than methotrexate in the real-world setting. Additional studies directly comparing these medications should be performed for confirmation

    Functional Interaction between CFTR and the Sodium-Phosphate Co-Transport Type 2a in Xenopus laevis Oocytes

    Get PDF
    A growing number of proteins, including ion transporters, have been shown to interact with Cystic Fibrosis Transmembrane conductance Regulator (CFTR). CFTR is an epithelial chloride channel that is involved in Cystic Fibrosis (CF) when mutated; thus a better knowledge of its functional interactome may help to understand the pathophysiology of this complex disease. In the present study, we investigated if CFTR and the sodium-phosphate co-transporter type 2a (NPT2a) functionally interact after heterologous expression of both proteins in Xenopus laevis oocytes.NPT2a was expressed alone or in combination with CFTR in X. laevis oocytes. Using the two-electrode voltage-clamp technique, the inorganic phosphate-induced current (IPi) was measured and taken as an index of NPT2a activity. The maximal IPi for NPT2a substrates was reduced when CFTR was co-expressed with NPT2a, suggesting a decrease in its expression at the oolemna. This was consistent with Western blot analysis showing reduced NPT2a plasma membrane expression in oocytes co-expressing both proteins, whereas NPT2a protein level in total cell lysate was the same in NPT2a- and NPT2a+CFTR-oocytes. In NPT2a+CFTR- but not in NPT2a-oocytes, IPi and NPT2a surface expression were increased upon PKA stimulation, whereas stimulation of Exchange Protein directly Activated by cAMP (EPAC) had no effect. When NPT2a-oocytes were injected with NEG2, a short amino-acid sequence from the CFTR regulatory domain that regulates PKA-dependent CFTR trafficking to the plasma membrane, IPi values and NPT2a membrane expression were diminished, and could be enhanced by PKA stimulation, thereby mimicking the effects of CFTR co-expression.We conclude that when both CFTR and NPT2a are expressed in X. laevis oocytes, CFTR confers to NPT2a a cAMPi-dependent trafficking to the membrane. This functional interaction raises the hypothesis that CFTR may play a role in phosphate homeostasis

    The Acid Test of Fluoride: How pH Modulates Toxicity

    Get PDF
    Background: It is not known why the ameloblasts responsible for dental enamel formation are uniquely sensitive to fluoride (F−F^−). Herein, we present a novel theory with supporting data to show that the low pH environment of maturating stage ameloblasts enhances their sensitivity to a given dose of F−F^−. Enamel formation is initiated in a neutral pH environment (secretory stage); however, the pH can fall to below 6.0 as most of the mineral precipitates (maturation stage). Low pH can facilitate entry of F−F^− into cells. Here, we asked if F−F^− was more toxic at low pH, as measured by increased cell stress and decreased cell function. Methodology/Principal Findings: Treatment of ameloblast-derived LS8 cells with F−F^− at low pH reduced the threshold dose of F−F^− required to phosphorylate stress-related proteins, PERK, eIF2α, JNK and c-jun. To assess protein secretion, LS8 cells were stably transduced with a secreted reporter, Gaussia luciferase, and secretion was quantified as a function of F−F^− dose and pH. Luciferase secretion significantly decreased within 2 hr of F−F^− treatment at low pH versus neutral pH, indicating increased functional toxicity. Rats given 100 ppm F−F^− in their drinking water exhibited increased stress-mediated phosphorylation of eIF2α in maturation stage ameloblasts (pH<6.0) as compared to secretory stage ameloblasts (pH∼7.2). Intriguingly, F−F^−-treated rats demonstrated a striking decrease in transcripts expressed during the maturation stage of enamel development (Klk4 and Amtn). In contrast, the expression of secretory stage genes, AmelX, Ambn, Enam and Mmp20, was unaffected. Conclusions: The low pH environment of maturation stage ameloblasts facilitates the uptake of F−F^−, causing increased cell stress that compromises ameloblast function, resulting in dental fluorosis

    The Optimal Design of Trade Policy Flexibility in the WTO

    Full text link

    Central Role of Pyrophosphate in Acellular Cementum Formation

    Get PDF
    Background: Inorganic pyrophosphate (PPi) is a physiologic inhibitor of hydroxyapatite mineral precipitation involved in regulating mineralized tissue development and pathologic calcification. Local levels of PPi are controlled by antagonistic functions of factors that decrease PPi and promote mineralization (tissue-nonspecific alkaline phosphatase, Alpl/TNAP), and those that increase local PPi and restrict mineralization (progressive ankylosis protein, ANK; ectonucleotide pyrophosphatase phosphodiesterase-1, NPP1). The cementum enveloping the tooth root is essential for tooth function by providing attachment to the surrounding bone via the nonmineralized periodontal ligament. At present, the developmental regulation of cementum remains poorly understood, hampering efforts for regeneration. To elucidate the role of PPi in cementum formation, we analyzed root development in knock-out ((-/-)) mice featuring PPi dysregulation. Results: Excess PPi in the Alpl(-/-) mouse inhibited cementum formation, causing root detachment consistent with premature tooth loss in the human condition hypophosphatasia, though cementoblast phenotype was unperturbed. Deficient PPi in both Ank and Enpp1(-/-) mice significantly increased cementum apposition and overall thickness more than 12-fold vs. controls, while dentin and cellular cementum were unaltered. Though PPi regulators are widely expressed, cementoblasts selectively expressed greater ANK and NPP1 along the root surface, and dramatically increased ANK or NPP1 in models of reduced PPi output, in compensatory fashion. In vitro mechanistic studies confirmed that under low PPi mineralizing conditions, cementoblasts increased Ank (5-fold) and Enpp1 (20-fold), while increasing PPi inhibited mineralization and associated increases in Ank and Enpp1 mRNA. Conclusions: Results from these studies demonstrate a novel developmental regulation of acellular cementum, wherein cementoblasts tune cementogenesis by modulating local levels of PPi, directing and regulating mineral apposition. These findings underscore developmental differences in acellular versus cellular cementum, and suggest new approaches for cementum regeneration

    Fluoride inhibits the response of bone cells to mechanical loading

    Get PDF
    The response of bone cells to mechanical loading is mediated by the cytoskeleton. Since the bone anabolic agent fluoride disrupts the cytoskeleton, we investigated whether fluoride affects the response of bone cells to mechanical loading, and whether this is cytoskeleton mediated. The mechano-response of osteoblasts was assessed in vitro by measuring pulsating fluid flow-induced nitric oxide (NO) production. Osteocyte shape was determined in hamster mandibles in vivo as parameter of osteocyte mechanosensitivity. Pulsating fluid flow (0.7 ± 0.3 Pa, 5 Hz) stimulated NO production by 8-fold within 5 min. NaF (10-50 μM) inhibited pulsating fluid flow-stimulated NO production after 10 min, and decreased F-actin content by ~3-fold. Fluid flow-induced NO response was also inhibited after F-actin disruption by cytochalasin B. NaF treatment resulted in more elongated, smaller osteocytes in interdental bone in vivo. Our results suggest that fluoride inhibits the mechano-response of bone cells, which might occur via cytoskeletal changes. Since decreased mechanosensitivity reduces bone mass, the reported anabolic effect of fluoride on bone mass in vivo is likely mediated by other factors than changed bone cell mechanosensitivity. © 2011 The Society of The Nippon Dental University
    • …
    corecore