769 research outputs found

    Quantum engineering of squeezed states for quantum communication and metrology

    Get PDF
    We report the experimental realization of squeezed quantum states of light, tailored for new applications in quantum communication and metrology. Squeezed states in a broad Fourier frequency band down to 1 Hz has been observed for the first time. Nonclassical properties of light in such a low frequency band is required for high efficiency quantum information storage in electromagnetically induced transparency (EIT) media. The states observed also cover the frequency band of ultra-high precision laser interferometers for gravitational wave detection and can be used to reach the regime of quantum non-demolition interferometry. And furthermore, they cover the frequencies of motions of heavily macroscopic objects and might therefore support the attempts to observe entanglement in our macroscopic world.Comment: 12 pages, 3 figure

    Trends and oscillations in the Indian summer monsoon rainfall over the last two millennia

    Get PDF
    Observations show that summer rainfall over large parts of South Asia has declined over the past five to six decades. It remains unclear, however, whether this trend is due to natural variability or increased anthropogenic aerosol loading over South Asia. Here we use stable oxygen isotopes in speleothems from northern India to reconstruct variations in Indian monsoon rainfall over the last two millennia. We find that within the long-term context of our record, the current drying trend is not outside the envelope of monsoon’s oscillatory variability, albeit at the lower edge of this variance. Furthermore, the magnitude of multi-decadal oscillatory variability in monsoon rainfall inferred from our proxy record is comparable to model estimates of anthropogenic-forced trends of mean monsoon rainfall in the 21st century under various emission scenarios. Our results suggest that anthropogenic forced changes in monsoon rainfall will remain difficult to detect against a backdrop of large natural variability

    Broadband detection of squeezed vacuum: A spectrum of quantum states

    Get PDF
    We demonstrate the simultaneous quantum state reconstruction of the spectral modes of the light field emitted by a continuous wave degenerate optical parametric amplifier. The scheme is based on broadband measurement of the quantum fluctuations of the electric field quadratures and subsequent Fourier decomposition into spectral intervals. Applying the standard reconstruction algorithms to each bandwidth-limited quantum trajectory, a "spectrum" of density matrices and Wigner functions is obtained. The recorded states show a smooth transition from the squeezed vacuum to a vacuum state. In the time domain we evaluated the first order correlation function of the squeezed output field, showing good agreement with the theory.Comment: 11 pages, 5 figure

    Indian monsoon variability on millennial-orbital timescales

    Get PDF
    The Indian summer monsoon (ISM) monsoon is critical to billions of people living in the region. Yet, significant debates remain on primary ISM drivers on millennial-orbital timescales. Here, we use speleothem oxygen isotope (δ18O) data from Bittoo cave, Northern India to reconstruct ISM variability over the past 280,000 years. We find strong coherence between North Indian and Chinese speleothem δ18O records from the East Asian monsoon domain, suggesting that both Asian monsoon subsystems exhibit a coupled response to changes in Northern Hemisphere summer insolation (NHSI) without significant temporal lags, supporting the view that the tropical-subtropical monsoon variability is driven directly by precession-induced changes in NHSI. Comparisons of the North Indian record with both Antarctic ice core and sea-surface temperature records from the southern Indian Ocean over the last glacial period do not suggest a dominant role of Southern Hemisphere climate processes in regulating the ISM variability on millennial-orbital timescales

    Warburg effect and translocation-induced genomic instability: two yeast models for cancer cells

    Get PDF
    Yeast has been established as an efficient model system to study biological principles underpinning human health. In this review we focus on yeast models covering two aspects of cancer formation and progression (i) the activity of pyruvate kinase (PK), which recapitulates metabolic features of cancer cells, including the Warburg effect, and (ii) chromosome bridge-induced translocation (BIT) mimiking genome instability in cancer. Saccharomyces cerevisiae is an excellent model to study cancer cell metabolism, as exponentially growing yeast cells exhibit many metabolic similarities with rapidly proliferating cancer cells. The metabolic reconfiguration includes an increase in glucose uptake and fermentation, at the expense of respiration and oxidative phosphorylation (the Warburg effect), and involves a broad reconfiguration of nucleotide and amino acid metabolism. Both in yeast and humans, the regulation of this process seems to have a central player, PK, which is up-regulated in cancer, and to occur mostly on a post-transcriptional and post-translational basis. Furthermore, BIT allows to generate selectable translocation-derived recombinants ("translocants"), between any two desired chromosomal locations, in wild-type yeast strains transformed with a linear DNA cassette carrying a selectable marker flanked by two DNA sequences homologous to different chromosomes. Using the BIT system, targeted non-reciprocal translocations in mitosis are easily inducible. An extensive collection of different yeast translocants exhibiting genome instability and aberrant phenotypes similar to cancer cells has been produced and subjected to analysis. In this review, we hence provide an overview upon two yeast cancer models, and extrapolate general principles for mimicking human disease mechanisms in yeast

    Nitrous oxide water column distribution during the transition from anoxic to oxic conditions in the Baltic Sea

    No full text
    International audienceIn January 2003, a major inflow of cold and oxygen-rich North Sea Water in the Baltic Sea terminated an ongoing stagnation period in parts of the central Baltic Sea. In order to investigate the role of North Sea Water inflow to the Baltic Sea with regard to the production of nitrous oxide (N2O), we measured dissolved and atmospheric N2O at 26 stations in the southern and central Baltic Sea in October 2003. At the time of our cruise, water renewal had proceeded to the eastern Gotland Basin, whereas the western Gotland Basin was still unaffected by the inflow. The deep water renewal was detectable in the distributions of temperature, salinity, and oxygen concentrations as well as in the distribution of the N2O concentrations: Shallow stations in the Kiel Bight and Pomeranian Bight were well-ventilated with uniform N2O concentrations near equilibrium throughout the water column. In contrast, stations in the deep basins, such as the Bornholm and the Gotland Deep, showed a clear stratification with deep water affected by North Sea Water. Inflowing North Sea Water led to changed environmental conditions, especially enhanced oxygen (O2) or declining hydrogen sulfide (H2S) concentrations, thus, affecting the conditions for the production of N2O. Pattern of N2O profiles and correlations with parameters like oxygen and nitrate differed between the basins. The dominant production pathway seems to be nitrification rather than denitrification. No indications for advection of N2O by North Sea Water were found. A rough budget revealed a significant surplus of in situ produced N2O after the inflow. However, due to the permanent halocline, it can be assumed that the formed N2O does not reach the atmosphere. Hydrographic aspects therefore are decisive factors determining the final release of produced N2O to the atmosphere

    Nitrous oxide in the North Atlantic Ocean

    Get PDF
    In order to get a comprehensive picture of the distribution of nitrous oxide (N2O) in the North Atlantic Ocean, measurements of dissolved nitrous oxide were made during three cruises in the tropical, subtropical and cold-temperate North Atlantic Ocean in October/November 2002, March/April 2004, and May 2002, respectively. To account for the history of atmospheric N2O, we suggest a new depth-dependent calculation of excess N2O (ΔN2O). N2O depth profiles showed supersaturation throughout the water column with a distinct increasing trend from the cold-temperate to the tropical region. Lowest nitrous oxide concentrations, near equilibrium and with an average of 11.0±1.7 nmol L−1, were found in the cold-temperate North Atlantic where the profiles showed no clear maxima. Highest values up to 37.3 nmol L−1 occurred in the tropical North Atlantic with clear maxima at approximately 400 m. A positive correlation of nitrous oxide with nitrate, as well as excess nitrous oxide with the apparent oxygen utilization (AOU), was only observed in the subtropical and tropical regions. Therefore, we conclude that the formation of nitrous oxide via nitrification occurs in the tropical region rather than in the cold-temperate region of the North Atlantic Ocea

    Distribution of N<sub>2</sub>O in the Baltic Sea during transition from anoxic to oxic conditions

    Get PDF
    In January 2003, a major inflow of cold and oxygen-rich North Sea Water terminated an ongoing stagnation period in parts of the central Baltic Sea. In order to investigate the role of North Sea Water inflow in the production of nitrous oxide (N2O), we measured dissolved and atmospheric N<2O at 26 stations in the southern and central Baltic Sea in October 2003. At the time of our cruise, water renewal had proceeded to the eastern Gotland Basin, whereas the western Gotland Basin was still unaffected by the inflow. The deep water renewal was detectable in the distributions of temperature, salinity, and oxygen concentrations as well as in the distribution of the N2O concentrations: Shallow stations in the Kiel Bight and Pomeranian Bight were well-ventilated with uniform N2O concentrations near equilibrium throughout the water column. In contrast, stations in the deep basins, such as the Bornholm and the Gotland Deep, showed a clear stratification with deep water affected by North Sea Water. Inflowing North Sea Water led to changed environmental conditions, especially enhanced oxygen (O2) or declining hydrogen sulphide (H2S) concentrations, thus, affecting the conditions for the production of N2O. Pattern of N2O profiles and correlations with parameters like oxygen and nitrate differed between the basins. Because of the positive correlation between ΔN2O and AOU in oxic waters the dominant production pathway seems to be nitrification rather than denitrification. Advection of N2O by North Sea Water was found to be of minor importance. A rough budget revealed a significant surplus of in situ produced N2O after the inflow. However, due to the permanent halocline, it can be assumed that the N2O produced does not reach the atmosphere. Hydrographic aspects therefore are decisive factors determining the final release of N2O produced to the atmosphere

    Southeast Minnesota regional research and demonstration summary, 2005

    Get PDF
    This archival publication may not reflect current scientific knowledge or recommendations. Current information available from the University of Minnesota Extension: https://www.extension.umn.edu.A summary of research conducted by University of Minnesota Extension Service in Southern Minnesota in 2005. Areas of research include corn, soybeans, and alfalfa

    Quantifying shifts in primary factor demand in the South African economy

    Get PDF
    This article uses a dynamic CGE model to explain the persistence in the high levels of unemployment in the South African economy in spite of modest to relatively strong output growth. We make use of a historical simulation for the period 2006 to 2013 and find that the capital-labour ratio increased despite a relative increase in the rental price of capital. Classical economic theory suggests that changes in industry preferences toward capital and labour lead to adjusted capital-labour ratios. We quantify the changes in industry factor preferences during this period and highlight their impact in explaining observed labour market outcomes. Other changes in the economy over this period are also quantified.A grant from Economic Research Southern Africa.http://www.tandfonline.com/loi/cdsa202017-08-31hb2017Economic
    corecore