2,619 research outputs found

    The thermal model on the verge of the ultimate test: particle production in Pb-Pb collisions at the LHC

    Full text link
    We investigate the production of hadrons in nuclear collisions within the framework of the thermal (or statistical hadronization) model. We discuss both the ligh-quark hadrons as well as charmonium and provide predictions for the LHC energy. Even as its exact magnitude is dependent on the charm production cross section, not yet measured in Pb-Pb collisions, we can confidently predict that at the LHC the nuclear modification factor of charmonium as a function of centrality is larger than that observed at RHIC and compare the experimental results to these predictions.Comment: 4 pages, 3 figures; proceedings of QM201

    The chemical equilibration volume: measuring the degree of thermalization

    Full text link
    We address the issue of the degree of equilibrium achieved in a high energy heavy-ion collision. Specifically, we explore the consequences of incomplete strangeness chemical equilibrium. This is achieved over a volume V of the order of the strangeness correlation length and is assumed to be smaller than the freeze-out volume. Probability distributions of strange hadrons emanating from the system are computed for varying sizes of V and simple experimental observables based on these are proposed. Measurements of such observables may be used to estimate V and as a result the degree of strangeness chemical equilibration achieved. This sets a lower bound on the degree of kinetic equilibrium. We also point out that a determination of two-body correlations or second moments of the distributions are not sufficient for this estimation.Comment: 16 pages, 15 figures, revtex

    Heavy quark(onium) at LHC: the statistical hadronization case

    Full text link
    We discuss the production of charmonium in nuclear collisions within the framework of the statistical hadronization model. We demonstrate that the model reproduces very well the availble data at RHIC. We provide predictions for the LHC energy where, dependently on the charm production cross section, a dramatically different behaviour of charmonium production as a function of centrality might be expected. We discuss also the case in elementary collisions, where clearly the statistical model does not reproduce the measurements.Comment: 8 pages, 5 figures; proceeding of SQM09, Buzios, Brazil, to be published in J. Phys.

    Strange Particle Production from SIS to LHC

    Full text link
    >1A review of meson emission in heavy ion collisions at incident energies from SIS up to collider energies is presented. A statistical model assuming chemical equilibrium and local strangeness conservation (i.e. strangeness conservation per collision) explains most of the observed features. Emphasis is put onto the study of K+K^+ and KK^- emission at low incident energies. In the framework of this statistical model it is shown that the experimentally observed equality of K+K^+ and KK^- rates at ``threshold-corrected'' energies ssth\sqrt{s} - \sqrt{s_{th}} is due to a crossing of two excitation functions. Furthermore, the independence of the K+K^+ to KK^- ratio on the number of participating nucleons observed between SIS and RHIC is consistent with this model. It is demonstrated that the KK^- production at SIS energies occurs predominantly via strangeness exchange and this channel is approaching chemical equilibrium. The observed maximum in the K+/π+K^+/\pi^+ excitation function is also seen in the ratio of strange to non-strange particle production. The appearance of this maximum around 30 AA\cdotGeV is due to the energy dependence of the chemical freeze-out parameters TT and μB\mu_B.Comment: Presented at the International Workshop "On the Physics of the Quark-Gluon Plasma", Palaiseau, France, September 2001. 10 pages, 8 figure

    Z0 Boson Measurement with the ALICE Central Barrel in pp collisions at 14 TeV

    Get PDF
    The possibility to detect the Z0 in the ALICE central barrel is studied via the electronic decay channel Z0->e+e-. The signal and the background are simulated with the leading order event generator PYTHIA 6. The total cross-sections are taken from NLO calculations. Based on test beam data, the electron identification performance of the Transition Radiation Detector is extrapolated to high momenta. The expected yields for minimum-bias pp collisions at 14 TeV are presented. An isolation cut on the single electron, together with a minimum transverse momentum cut, allows to obtain a clear signal. The expected background is of the order of 1 % with the main contribution coming from misidentified pions from jets.Comment: 4 pages, 3 figures, QM2008 proceeding

    Pion Propagation near the QCD Chiral Phase Transition

    Get PDF
    We point out that, in analogy with spin waves in antiferromagnets, all parameters describing the real-time propagation of soft pions at temperatures below the QCD chiral phase transition can be expressed in terms of static correlators. This allows, in principle, the determination of the soft pion dispersion relation on the lattice. Using scaling and universality arguments, we determine the critical behavior of the parameters of pion propagation. We predict that when the critical temperature is approached from below, the pole mass of the pion drops despite the growth of the pion screening mass. This fact is attributed to the decrease of the pion velocity near the phase transition.Comment: 8 pages (single column), RevTeX; added references, version to be published in PR

    Overpopulation of Ωˉ\bar \Omega in pp collisions: a way to distinguish statistical hadronization from string dynamics

    Full text link
    The Ωˉ/Ω\bar{\Omega}/\Omega ratio originating from string decays is predicted to be larger than unity in proton proton interactions at SPS energies (ElabE_{\rm lab}=160 GeV). The anti-omega dominance increases with decreasing beam energy. This surprising behavior is caused by the combinatorics of quark-antiquark production in small and low-mass strings. Since this behavior is not found in a statistical description of hadron production in proton proton collisions, it may serve as a key observable to probe the hadronization mechanism in such collisions.Comment: 4 pages, 4 figure

    Particle Ratios, Equilibration, and the QCD Phase Boundary

    Get PDF
    We discuss the status of thermal model descriptions of particle ratios in central nucleus-nucleus collisions at ultra-relativistic energy. An alternative to the ``Cleymans-Redlich'' interpretation of the freeze-out trajectory is given in terms of the total baryon density. Emphasis is placed on the relation between the chemical equilibration parameters and the QCD phase boundary. Furthermore, we trace the essential difference between thermal model analyses of data from collisions between elementary particles and from heavy ion collisions as due to a transition from local strangeness conservation to percolation of strangeness over large volumes, as occurs naturally in a deconfined medium. We also discuss predictions of the thermal model for composite particle production.Comment: Contribution to SQM2001 Conference, submitted to J. Phys.

    Finite hadronization time and unitarity in quark recombination model

    Full text link
    The effect of finite hadronization time is considered in the recombination model, and it is shown that the hadron multiplicity turns out to be proportional to the initial quark density and unitarity is conserved in the model. The baryon to meson ratio increases rapidly with the initial quark density due to competition among different channels.Comment: 4 pages in RevTeX, 3 eps figures, to appear in J. Phys.G as a lette

    Distinguishing Hadronic Cascades from Hydrodynamic Models in Pb(160 AGeV)+Pb Reactions by Impact Parameter Variation

    Get PDF
    We propose to study the impact parameter dependence of the anti-Lambda/anti-Proton ratio in Pb(160AGeV)+Pb reactions. The anti-Lambda/anti-Proton ratio is a sensible tool to distinguish between hadronic cascade models and hydrodynamical models, which incorporate a QGP phase transition
    corecore