$Z^{0} B$ oson M easurem ent w ith the $A \operatorname{LIC} E C$ entral B arrel in pp collisions at 14 TeV

R . B aithache ${ }^{1}$, A. A ndronic ${ }^{1}$, and P B raun M unzinger ${ }^{1 ;}{ }^{2}$ for the ALICE Collaboration
${ }^{1} \mathrm{G}$ esellschaft fuer Schwerionenforschung mbH , D arm stadt, G erm any and
${ }^{2}$ Technische U niversitaet D am stadt, G erm any

Abstract

The possibility to detect the Z^{0} in the A L IC E central barrel is studied via the electron ic decay channel $Z^{0}!e^{+} e$. The signal and the background are sim ulated with the leading order event generator PYTH IA 6. The total cross-sections are taken from NLO calculations. B ased on test beam data, the electron identi cation perform ance of the Transition R adiation D etector is extrapolated to h igh m om enta. The expected y ields for m in im um -bias pp collisions at 14 TeV are presented. An isolation cut on the single electron, together w ith a m in m um transverse m om entum cut, allow s to obtain a clear signal. The expected background is of the order of $1 \% \mathrm{w}$ ith the m ain contribution com ing from m isidenti ed pions from jets.

Them easurem ents of the W and Z^{0} bosons in $p p$ and $e^{+} e$ collisions have allow ed precise test of the Standard M odel (SM) of particle physics. In pp collisions at the LH C , the convergence of the NLO and NNLO calculations o ers the possibility to use the total Z^{0} cross section for a better understanding of the collider lum inosity and the acceptance and e ciency of the detectors [1]. The high p_{T} electrons em itted in the electronic Z^{0} decays can be a controlled observable for checks of the p_{T} calibration and resolution betw een $30 \mathrm{GeV}=\mathrm{C}$ and $50 \mathrm{GeV}=\mathrm{c}$. In heavy ion collisions Z^{0} is a good candidate for an altemative reference for quarkonium study, despite the large m ass di erences, $m_{z} \quad m_{J=}$, and the di erence in production m echanism s, m ainly qq for Z^{0} and $g g$ for quarkonium. It should be weakly a ected by nuclear shadow ing [2] and the presence of the Q uark G luon P lasm a [3]. In this work, a feasibility study is presented to detect Z^{0} through $Z^{0}!e^{+} e$ in the centralbarrel of A L IC E. T he detection of the W and Z^{0} bosons through their m uon decays in the A LICE m uon spectrom eter has been previously extensively studied [4].

The leading order event generator PY TH IA 6.326 [5] is used to sim ulate the production of Z^{0} bosons. O nly the low est order B om processes, qq! $=Z^{0}$, have been generated. The parton show er algorithm of PYTHIA produces additional jets, that m im ic the contributions of higher processes, $q \bar{q}!\quad=Z g$ and $q(\bar{q}) g!\quad=Z q(\bar{q})$. The CTEQ5L PDFs are used. It was shown that the p_{T} and $y Z^{0}$ distributions m easured at Tevatron energies are well reproduced [6]. Pure Z^{0} production, w ithout the com plete $=Z^{0}$ interference, has been sim ulated in this work. D ue to the large vector boson m asses, the contributions of higher order Q C D processes can be approxim ated by a k factor, found to be about 1.5 from com parison w ith m easurem ents in pp collisions. The extrapolated cross sections for the LH C are sum m arized in Tab回. The yields were calculated tak ing an inelastic pp cross section of $70 \mathrm{~m} . \mathrm{b}$ at 14 TeV . C alculations have been carried out up to NNLO . In the follow ing we norm alise all the cross section to the NN LO calculations [1].

pp at 14 TeV	Pythia [nb]	N n Lo [nb]	$\mathrm{N}^{\mathrm{X} p p}$
$\mathrm{Z}^{0}!\mathrm{e}^{+} \mathrm{e}$	2.4	1.84	310
W ! e	23.8	19.8	310

TABLE I: Inclusive cross sections tim es branching ratio obtained with PYTHIA and extrapolated after com parison to SppS and Tevatron data, leading to a k factor of 1.5. R esults are for pp collisions at 14 TeV and are com pared w ith N N LO calculations [1].

The Inner Tracking System (IT S), T im e Projection C ham ber (TPC) and Transition R adiator D etector (TRD) provide good tracking capability w ithin their geom etrical acceptance, j j 0.9 ,

FIG.1: ${ }^{T R D}$ as function of m om entum extracted from testbeam data com pared w ith simulations w ith in the A liR oot fram ew ork and extrapolated to high p (left panel). C alculated TPC, extrapolated TRD and com bined as function of m om entum (right panel).
$0 \ll 2$. The Particle Identi cation (P ID) algorithm used requires that the particles are reconstructed in at least ve planes of the TRD, which leads to an overall m ean reconstruction e ciency of 80%. The p_{T} resolution is about 3.5% at $100 \mathrm{GeV}=\mathrm{C}$ in the nom inal 0.5 T m agnetic eld. To identify the electrons, the $d E=d x$ of the TPC and the TRD are used. At such high p_{T}, the m ain di culty com es from the m uch m ore num erous that can be m isidenti ed as electrons. The percentage of m isidenti ed , the e ciency, is determ ined for a given e e ciency, e. The left panel of Fig 1 show S TRD, as it has been obtained from test beam data analysis of sm all and big cham bers [7] and from sim ulations donew ithin the A liR oot fram ew ork 8]. The results of a one dim ensional likelinood m ethod, $L-Q$, can be im proved by using a two dim ensionalm ethod, L-Q 1,22 or a neural netw ork, NNs 7$]$. A t of the $L-Q 1,2$ perform ances allows to extrapolate TRD to the p range of interest for the Z°. On the right panel of Fig 回, TPC has been estim ated w ith simulations for ${ }_{e}^{T P C}=90 \%$. The nal combined for $e=81 \%$ $\left(={ }_{e}^{T P C} \quad e_{e}^{T R D}=0.90 .9\right)$ is also plotted in Fid 1 . The response of the ALICE central barrel is sim ulated w ith a fast sim ulation program.

$j_{\mathrm{e}^{+}=} \mathrm{j} 0.9$				$\begin{array}{\|l\|} \hline 8.6 \% \\ \hline 3.5 \% \end{array}$
$\mathrm{A}_{\mathrm{e}} \stackrel{\mathrm{e}}{\text { tr }}_{\text {e }}^{\text {e }}{ }_{\mathrm{e}}^{\text {pid }}$				
A_{e}	${ }_{e}^{\text {tr }}{ }^{\text {prid }}{ }_{\mathrm{e}}$	$\mathrm{p}_{\text {T }}$	$>25 \mathrm{GeV}=\mathrm{C}$	3.2\%
$\mathrm{A}_{\mathrm{e}}{ }_{\mathrm{e}}^{\text {er }}$	${ }_{\mathrm{e}}^{\text {pid }} \mathrm{p}_{\text {T }}$	>	$5 \mathrm{G} \mathrm{eV}=\mathrm{C}$ iso	3.2\%

TABLE II: A cceptance and reconstruction e ciency for $Z{ }^{0}$ in the m ass range $60 \mathrm{GeV}=\mathrm{C}^{2}<\mathrm{M} \mathrm{e}^{+}$e $<116 \mathrm{GeV}=\mathrm{C}^{2}$ for di erent single track cuts.

The geom etricalacceptance of the centralbarrelim plies that both of the electronshave je $\begin{aligned} & \mathrm{k} \\ & 0.9 \text {. }\end{aligned}$ T his reduces the Z^{0} yield to 8.6% of the full phase space yield (see Tab.II). The statistical errors

FIG. 2: $\mathrm{e}^{+} \mathrm{e}$ generated ($\mathrm{m}_{\mathrm{sim}}$) and reconstructed ($\mathrm{m}_{\mathrm{rec}}$) invariant m ass yield from Z^{0} in the total phase space and w ith in the centralbarrel acceptance for di erent $p_{T e}$ cut.
are below 1\% . A clear signature of Z^{0} decays is two high p_{T} isolated electrons. A p_{T} cut at $25 \mathrm{GeV}=\mathrm{C}$ is considered together w ith an isolation cut. It will reject a track i, if a track j is found to have: $\mathrm{p}_{\mathrm{T}}^{j}>2 \mathrm{GeV}, j_{i} \quad j \mathrm{j} 0.1$ and $j_{i} \quad j j 0.1 \mathrm{rad} .99 \%$ of the signal survives th is cut. F id 2
 w ithout tracking and PID e ciencies. The reconstructed $m \underset{r}{{\underset{r e c}{+}}_{e}^{e}}$ is also plotted for di erent p_{T} e cuts. B rem sstrahlung leads to a tail tow ards low er values of the m ass.

The di erent sources of background that are investigated in pp collisions at ${ }^{\mathrm{P}} \overline{\mathrm{S}}=14 \mathrm{TeV}$ are: reconstructed dielectrons from jets, that can be real electrons or pions m isidenti ed as electrons; W ! e events w ith an associated hadronic jet that results in a second reconstructed electron ($B r_{W}$! e $=10.75 \%$); Z^{0} ! events, in which electrons or m isidenti ed pions from decays (Br ! $\mathrm{e}=+\mathrm{x}=44.0850 \%$) are com bined; electrons and m isidenti ed pions from tt events ($B r_{t!}$ bw 100%); sim ultaneous sem ielectronic decays of D and $D m$ esons ($B r_{c}$! ex 9.6%); and sim ultaneous sem ielectronic decays of B and B m esons ($B r_{b}$! ex 10.86%). The jets have been sim ulated w ith the PYTHIA using Tune A CDF, that gives a total cross section of 54.7 mb [9]. D ue to the high m asses of the W boson and the top quark, only the low est order processes for W production ($q q^{\circ}$! W) and tt production ($g g$! tt and qq! tt) have been generated w ith PYTH IA and norm alised to the N LO cross sections. For the lighter c and b quarks production, contributions from higher order corrections, like avour excitations (qQ! qQ) and gluon splitting (g! Q Q) have also been taken into account. The tuned PYTH IA [10] p_{T} spectra of cand b have been com pared to NLO predictions (HVQMNR program [11]) and found to be softer by an order 10 at very high p_{T}. This would result in a contribution of cc and bb about 100 higher in the invariant m ass yield.
T he left panel of F ig 3 show s the reconstructed electron spectra. M isidenti ed from jets constitute the m ain source of reconstructed electrons above $10 \mathrm{GeV}=\mathrm{C}$. N evertheless they are not isolated. The rejection factor of the isolation cut is of the order of 10^{4}. T he di erent contributions to the dielectron reconstructed invariant mass yield per m inim um -bias pp collisions are presented in the right panel of F ig 3 . A p_{T} cut at $25 \mathrm{GeV}=\mathrm{C}$ and the isolation cut are applied. The isolation cut suppresses also the correlated background from sim ultaneous sem i-electronic decays of D and D, or B and B , m esons, below one percent, even w ith a factor 100 , due to higher order corrections.

FIG. 3: Left panel: reconstructed single electron spectra in the central barrel. R ight panel: com parison w ith Z^{0} signal of di erent contributions to the background for a p_{T} cut at $25 \mathrm{GeV}=\mathrm{c}$ and the isolation cut. T he contributions have been averaged over the invariant mass range $66 \mathrm{GeV}=\mathrm{C}^{2}<\mathrm{M} \mathrm{e}^{+}$e $<116 \mathrm{GeV}=\mathrm{c}^{2}$.

The nal total background am ounts to about (0.7 5.3) \% of the signal, with a main contribution from m isidenti ed pions from jets. T he errors given are statistical.

W e have presented a study of Z^{0} reconstruction in pp collisions at 14 TeV w ith the central barrel of the A LIC E detector. The $Z^{0}!e^{+} e$ yields are of the order of $3 \quad 10{ }^{8}$ perm in im um -bias pp collisions. A Levell TRD trigger ($\mathrm{p}_{\mathrm{T}}>10 \mathrm{GeV}=\mathrm{C}$) for 10% of data taking timewould lead to a Z^{0} sam ple of about 100 per year. Further enhancem ent is possible using the H igh-Level Trigger. The decay electrons are identi ed w ith the TRD and the TPC detectors w ith in the centralbarrel ($j \ll 0.9$). The probability to m isidentify a has been extrapolated to the high m om entum region of interest and is of the order of 0.1 at $45 \mathrm{GeV}=\mathrm{c}$. The tw o m ain characteristics of the electrons em itted in Z^{0} decays, i.e. high p_{T} and isolation, have been used to reject the background. T w o high p_{T} isolated reconstructed electrons constitute a very clear signature of the Z^{0} in the centralbarrel. The background is expected to be of the order of 1% in pp collisions, dom inated by m isidenti ed pions from jets.
A cknow ledgm ent:
W e thank Chuncheng $\mathrm{X} u$ for pointing out the im portance of the isolation cut. R eferences
[1] A D. M artin et al., Eur. Phys. J.C . 18, 117-126 (2000)
[2] R.Vogt, Phys.Rev.C 64,044901 (2001)
[3] J.I.K apusta and S M H.W ong,Phys.Rev.D 62, 037301 (2000)
[4] Z. C onesa delValle et al., Phys. Lett. B 663,202 (2008), arX iv :hep-ph/0702118v2
[5] T. S jostrand et al., PY TH IA 6.3 Physics and M anual, hep-ph/0308153 (2003)
[6] B ritta T iller for the D 0 C ollaboration, D PG B erlin 04/03/2005; R . B ailhache to be published
[7] A. A ndronic et al., Nucl. Instr. and M eth. A 52240 (2004); ALIC E TRD Collaboration, G SI Scienti c Report (2004) 355; A. W ikk et al., Nucl. Instr. M eth. A 563310 (2006)
[8] A liR oot, A n O b ject-O riented D ata A nalysis Fram ew ork, http ://aliw eb .cem .ch/o ine/
[9] R . F ield http://www .phys.u .edu/ r eld/odf/tunes/py tuneA htm l.
[10]A lice P hysics P erform ance R eport V olum e II, J P hys. G 32 1753-1843 (2006)
[11]M . M angano, P. N ason and G.Ridol ,Nucl. Phys. B 373295 (1992)

