23,050 research outputs found

    Transverse momentum distributions and their forward- backward correlations in the percolating colour string approach

    Get PDF
    The forward-backward correlations in the pTp_T distributions, which present a clear signature of non-linear effects in particle production, are studied in the model of percolating colour strings. Quantitative predictions are given for these correlations at SPS, RHIC and LHC energies. Interaction of strings also naturally explains the flattening of pTp_T distributions and increase of with energy and atomic number for nuclear collisionsComment: 6 pages in LaTex, 3 figures in Postscrip

    Exact Study of the Effect of Level Statistics in Ultrasmall Superconducting Grains

    Get PDF
    The reduced BCS model that is commonly used for ultrasmall superconducting grains has an exact solution worked out long ago by Richardson in the context of nuclear physics. We use it to check the quality of previous treatments of this model, and to investigate the effect of level statistics on pairing correlations. We find that the ground state energies are on average somewhat lower for systems with non-uniform than uniform level spacings, but both have an equally smooth crossover from the bulk to the few-electron regime. In the latter, statistical fluctuations in ground state energies strongly depend on the grain's electron number parity.Comment: 4 pages, 3 eps figs, RevTe

    Heavy quark(onium) at LHC: the statistical hadronization case

    Full text link
    We discuss the production of charmonium in nuclear collisions within the framework of the statistical hadronization model. We demonstrate that the model reproduces very well the availble data at RHIC. We provide predictions for the LHC energy where, dependently on the charm production cross section, a dramatically different behaviour of charmonium production as a function of centrality might be expected. We discuss also the case in elementary collisions, where clearly the statistical model does not reproduce the measurements.Comment: 8 pages, 5 figures; proceeding of SQM09, Buzios, Brazil, to be published in J. Phys.

    Resolving the plasma profile via differential single inclusive suppression

    Get PDF
    The ability of experimental signatures to resolve the spatio-temporal profile of an expanding quark gluon plasma is studied. In particular, the single inclusive suppression of high momentum hadrons versus the centrality of a heavy-ion collision and with respect to the reaction plane in non-central collisions is critically examined. Calculations are performed in the higher twist formalism for the modification of the fragmentation functions. Radically different nuclear geometries are used. The influence of different initial gluon distributions as well as different temporal evolution scenarios on the single inclusive suppression of high momentum pions are outlined. It is demonstrated that the modification versus the reaction plane is quite sensitive to the initial spatial density. Such sensitivity remains even in the presence of a strong elliptic flow.Comment: 5 pages, 4 figures, RevTex

    The canonical partition function for relativistic hadron gases

    Full text link
    Particle production in high-energy collisions is often addressed within the framework of the thermal (statistical) model. We present a method to calculate the canonical partition function for the hadron resonance gas with exact conservation of the baryon number, strangeness, electric charge, charmness and bottomness. We derive an analytical expression for the partition function which is represented as series of Bessel functions. Our results can be used directly to analyze particle production yields in elementary and in heavy ion collisions. We also quantify the importance of quantum statistics in the calculations of the light particle multiplicities in the canonical thermal model of the hadron resonance gas.Comment: 10 pages, 2 figures; submitted for publication in EPJ

    Solitonic-exchange mechanism of surface~diffusion

    Full text link
    We study surface diffusion in the framework of a generalized Frenkel-Kontorova model with a nonconvex transverse degree of freedom. The model describes a lattice of atoms with a given concentration interacting by Morse-type forces, the lattice being subjected to a two-dimensional substrate potential which is periodic in one direction and nonconvex (Morse) in the transverse direction. The results are used to describe the complicated exchange-mediated diffusion mechanism recently observed in MD simulations [J.E. Black and Zeng-Ju Tian, Phys. Rev. Lett. {\bf 71}, 2445-2448(1993)].Comment: 22 Revtex pages, 9 figures to appear in Phys. Rev.

    AAT/WFI observations of the Extragalactic H I Cloud HIPASS J1712-64

    Full text link
    AAT/WFI optical images of a candidate extragalactic HI cloud, HIPASS J1712-64, are presented. The g and r-band CCD mosaic camera frames were processed using a new data pipeline recently installed at the AAO. The resultant stacked images reach significantly deeper levels than those of previous published optical imaging of this candidate, providing a detection limit M_g -7 at a distance of 3Mpc, the inferred distance to HIPASS J1712-64. However, detailed analysis of the images fails to uncover any stellar population associated with the HI emission. If this system is a member of the Local Group then it is pathologically different to other members. Hence, our observations reinforce earlier suggestions that this HI cloud is most likely Galactic in origin and not a Local Volume dwarf galaxy.Comment: 8 pages, accepted for publication in PASA (Figures reduced in resolution, please contact gfl if you wish the higher resolution versions

    Predictions of hadron abundances in pp collisions at the LHC

    Get PDF
    Based on the statistical hadronization model, we obtain quantitative predictions for the relative abundances of hadron species in pp collisions at the LHC. By using the parameters of the model determined at sqrt s = 200 GeV, and extrapolating the overall normalization from ppbar collisions at the SPS and Tevatron, we find that the expected rapidity densities are almost grand-canonical. Therefore, at LHC the ratios between different species become essentially energy-independent, provided that the hadronization temperature T_H and the strangeness suppression factor gamma_S retain the stable values observed in the presently explored range of pp and ppbar collisions.Comment: 4 pages. Final version published in JP
    • …
    corecore