23,800 research outputs found

    Theory of Type-II Superconductors with Finite London Penetration Depth

    Full text link
    Previous continuum theory of type-II superconductors of various shapes with and without vortex pinning in an applied magnetic field and with transport current, is generalized to account for a finite London penetration depth lambda. This extension is particularly important at low inductions B, where the transition to the Meissner state is now described correctly, and for films with thickness comparable to or smaller than lambda. The finite width of the surface layer with screening currents and the correct dc and ac responses in various geometries follow naturally from an equation of motion for the current density in which the integral kernel now accounts for finite lambda. New geometries considered here are thick and thin strips with applied current, and `washers', i.e. thin film squares with a slot and central hole as used for SQUIDs.Comment: 14 pages, including 15 high-resolution figure

    Analytic Solution for the Critical State in Superconducting Elliptic Films

    Full text link
    A thin superconductor platelet with elliptic shape in a perpendicular magnetic field is considered. Using a method originally applied to circular disks, we obtain an approximate analytic solution for the two-dimensional critical state of this ellipse. In the limits of the circular disk and the long strip this solution is exact, i.e. the current density is constant in the region penetrated by flux. For ellipses with arbitrary axis ratio the obtained current density is constant to typically 0.001, and the magnetic moment deviates by less than 0.001 from the exact value. This analytic solution is thus very accurate. In increasing applied magnetic field, the penetrating flux fronts are approximately concentric ellipses whose axis ratio b/a < 1 decreases and shrinks to zero when the flux front reaches the center, the long axis staying finite in the fully penetrated state. Analytic expressions for these axes, the sheet current, the magnetic moment, and the perpendicular magnetic field are presented and discussed. This solution applies also to superconductors with anisotropic critical current if the anisotropy has a particular, rather realistic form.Comment: Revtex file and 13 postscript figures, gives 10 pages of text with figures built i

    Critical State in Thin Anisotropic Superconductors of Arbitrary Shape

    Full text link
    A thin flat superconductor of arbitrary shape and with arbitrary in-plane and out-of-plane anisotropy of flux-line pinning is considered, in an external magnetic field normal to its plane. It is shown that the general three-dimensional critical state problem for this superconductor reduces to the two-dimensional problem of an infinitely thin sample of the same shape but with a modified induction dependence of the critical sheet current. The methods of solving the latter problem are well known. This finding thus enables one to study the critical states in realistic samples of high-Tc superconductors with various types of anisotropic flux-line pinning. As examples, we investigate the critical states of long strips and rectangular platelets of high-Tc superconductors with pinning either by the ab-planes or by extended defects aligned with the c-axis.Comment: 13 pages including 13 figure files in the tex

    Ginzburg-Landau Vortex Lattice in Superconductor Films of Finite Thickness

    Full text link
    The Ginzburg-Landau equations are solved for ideally periodic vortex lattices in superconducting films of arbitrary thickness in a perpendicular magnetic field. The order parameter, current density, magnetic moment, and the 3-dimensional magnetic field inside and outside the film are obtained in the entire ranges of the applied magnetic field, Ginzburg Landau parameter kappa, and film thickness. The superconducting order parameter varies very little near the surface (by about 0.01) and the energy of the film surface is small. The shear modulus c66 of the triangular vortex lattice in thin films coincides with the bulk c66 taken at large kappa. In thin type-I superconductor films with kappa < 0.707, c66 can be positive at low fields and negative at high fields.Comment: 12 pages including 14 Figures, corrected, Fig.14 added, appears in Phys. Rev. B 71, issue 1 (2005

    Meissner-London currents in superconductors with rectangular cross section

    Full text link
    Exact analytic solutions are presented for the magnetic moment and screening currents in the Meissner state of superconductor strips with rectangular cross section in a perpendicular magnetic field and/or with transport current. The extension to finite London penetration is achieved by an elegant numerical method which works also for disks. The surface current in the specimen corners diverges as l^(-1/3) where l is the distance from the corner. This enhancement reduces the barrier for vortex penetration and should increase the nonlinear Meissner effect in d-wave superconductors

    ROSAT monitoring of persistent giant and rapid variability in the narrow-line Seyfert 1 galaxy IRAS 13224-3809

    Full text link
    We report evidence for persistent giant and rapid X-ray variability in the radio-quiet, ultrasoft, strong Fe II, narrow-line Seyfert 1 galaxy IRAS 13224-3809. Within a 30 day ROSAT High Resolution Imager (HRI) monitoring observation at least five giant amplitude count rate variations are visible, with the maximum observed amplitude of variability being about a factor of 60. We detect a rise by a factor of about 57 in just two days. IRAS 13224-3809 appears to be the most X-ray variable Seyfert known, and its variability is probably nonlinear. We carefully check the identification of the highly variable X-ray source with the distant galaxy, and it appears to be secure. We examine possible explanations for the giant variability. Unusually strong relativistic effects and partial covering by occulting structures on an accretion disc can provide plausible explanations of the X-ray data, and we explore these two scenarios. Relativistic boosting effects may be relevant to understanding the strong X-ray variability of some steep spectrum Seyferts more generally.Comment: 14 pages, submitted to MNRA

    Vector screening masses in the quark-gluon plasma and their physical significance

    Full text link
    Static and non-static thermal screening states that couple to the conserved vector current are investigated in the high-temperature phase of QCD. Their masses and couplings to the current are determined at weak coupling, as well as using two-flavor lattice QCD simulations. A consistent picture emerges from the comparison, providing evidence that non-static Matsubara modes can indeed be treated perturbatively. We elaborate on the physical significance of the screening masses.Comment: 4 pages, 3 figures. Submitted as a contribution to the proceedings of the Quark Matter 2014 conference (talk given by H. Meyer

    A relation between screening masses and real-time rates

    Get PDF
    Thermal screening masses related to the conserved vector current are determined for the case that the current carries a non-zero Matsubara frequency, both in a weak-coupling approach and through lattice QCD. We point out that such screening masses are sensitive to the same infrared physics as light-cone real-time rates. In particular, on the perturbative side, the inhomogeneous Schrodinger equation determining screening correlators is shown to have the same general form as the equation implementing LPM resummation for the soft-dilepton and photon production rates from a hot QCD plasma. The static potential appearing in the equation is identical to that whose soft part has been determined up to NLO and on the lattice in the context of jet quenching. Numerical results based on this potential suggest that screening masses overshoot the free results (multiples of 2piT) more strongly than at zero Matsubara frequency. Four-dimensional lattice simulations in two-flavour QCD at temperatures of 250 and 340 MeV confirm the non-static screening masses at the 10% level. Overall our results lend support to studies of jet quenching based on the same potential at T > 250 MeV.Comment: 32 pages. v2: clarifications added, typos corrected; published versio
    corecore