1,102 research outputs found

    Inhibition of Fungi and Gram-Negative Bacteria by Bacteriocin BacTN635 Produced by Lactobacillus plantarum sp. TN635

    Get PDF
    The aim of this study was to evaluate 54 lactic acid bacteria (LAB) strains isolated from meat, fermented vegetables and dairy products for their capacity to produce antimicrobial activities against several bacteria and fungi. The strain designed TN635 has been selected for advanced studies. The supernatant culture of this strain inhibits the growth of all tested pathogenic including the four Gram-negative bacteria (Salmonella enterica ATCC43972, Pseudomonas aeruginosa ATCC 49189, Hafnia sp. and Serratia sp.) and the pathogenic fungus Candida tropicalis R2 CIP203. Based on the nucleotide sequence of the 16S rRNA gene of the strain TN635 (1,540 pb accession no FN252881) and the phylogenetic analysis, we propose the assignment of our new isolate bacterium as Lactobacillus plantarum sp. TN635 strain. Its antimicrobial compound was determined as a proteinaceous substance, stable to heat and to treatment with surfactants and organic solvents. Highest antimicrobial activity was found between pH 3 and 11 with an optimum at pH = 7. The BacTN635 was purified to homogeneity by a four-step protocol involving ammonium sulfate precipitation, centrifugal microconcentrators with a 10-kDa membrane cutoff, gel filtration Sephadex G-25, and C18 reverse-phase HPLC. SDS-PAGE analysis of the purified BacTN635, revealed a single band with an estimated molecular mass of approximately 4 kDa. The maximum bacteriocin production (5,000 AU/ml) was recorded after a 16-h incubation in Man, Rogosa, and Sharpe (MRS) medium at 30 °C. The mode of action of the partial purified BacTN635 was identified as bactericidal against Listeria ivanovii BUG 496 and as fungistatic against C. tropicalis R2 CIP203

    Eradication of chronic myeloid leukemia stem cells: a novel mathematical model predicts no therapeutic benefit of adding G-CSF to imatinib

    Get PDF
    Imatinib mesylate induces complete cytogenetic responses in patients with chronic myeloid leukemia (CML), yet many patients have detectable BCR-ABL transcripts in peripheral blood even after prolonged therapy. Bone marrow studies have shown that this residual disease resides within the stem cell compartment. Quiescence of leukemic stem cells has been suggested as a mechanism conferring insensitivity to imatinib, and exposure to the Granulocyte-Colony Stimulating Factor (G-CSF), together with imatinib, has led to a significant reduction in leukemic stem cells in vitro. In this paper, we design a novel mathematical model of stem cell quiescence to investigate the treatment response to imatinib and G-CSF. We find that the addition of G-CSF to an imatinib treatment protocol leads to observable effects only if the majority of leukemic stem cells are quiescent; otherwise it does not modulate the leukemic cell burden. The latter scenario is in agreement with clinical findings in a pilot study administering imatinib continuously or intermittently, with or without G-CSF (GIMI trial). Furthermore, our model predicts that the addition of G-CSF leads to a higher risk of resistance since it increases the production of cycling leukemic stem cells. Although the pilot study did not include enough patients to draw any conclusion with statistical significance, there were more cases of progression in the experimental arms as compared to continuous imatinib. Our results suggest that the additional use of G-CSF may be detrimental to patients in the clinic

    Ethylene supports colonization of plant roots by the mutualistic fungus Piriformospora indica

    Get PDF
    The mutualistic basidiomycete Piriformospora indica colonizes roots of mono- and dicotyledonous plants, and thereby improves plant health and yield. Given the capability of P. indica to colonize a broad range of hosts, it must be anticipated that the fungus has evolved efficient strategies to overcome plant immunity and to establish a proper environment for nutrient acquisition and reproduction. Global gene expression studies in barley identified various ethylene synthesis and signaling components that were differentially regulated in P. indica-colonized roots. Based on these findings we examined the impact of ethylene in the symbiotic association. The data presented here suggest that P. indica induces ethylene synthesis in barley and Arabidopsis roots during colonization. Moreover, impaired ethylene signaling resulted in reduced root colonization, Arabidopsis mutants exhibiting constitutive ethylene signaling, -synthesis or ethylene-related defense were hyper-susceptible to P. indica. Our data suggest that ethylene signaling is required for symbiotic root colonization by P. indica

    Analysis of the Promoter of Emb5 from Zea mays Identifies a Region of 523 bp Responsible for Its Embryo-Specific Activity

    Get PDF
    The maize Emb5 is an abscisic acid–responsive gene which is specifically expressed in the late embryo during seed maturity. To further dissect and identify the elements specific for its embryo expression pattern, we investigated the activity of the − 1653 bp upstream of the “full-length” promoter region of this gene in transgenic Arabidopsis plants. We first confirmed that the “full-length” promoter could indeed drive the expression of ÎČ-glucuronidase reporter gene (GUS) in the transgenic Arabidopsis seed embryo. Subsequently, DNA fragments of ~ 500 bp in length were generated after a series of progressive deletions from positions − 1653 bp to − 1 bp relative to the transcriptional initiation site. These fragments were fused with GUS and introduced into Arabidopsis. Measurement of the GUS activity in the immature seeds isolated from the transgenic plants revealed that the region between positions − 523 bp and − 1 bp, namely ProEm-D, is absolutely required and sufficient for the temporal and embryo-specific expression of GUS with an activity comparable with the full-length Emb5 promoter in Arabidopsis. Therefore, our results clearly demonstrated that the 523 bp ProEm-D can replace the − 1653 bp Emb5 promoter to drive embryo-specific expression in Arabidopsis seed. Because of its small size and strong embryo-specific activity, it could become the promoter of choice in metabolic pathway engineering to transfer multiple genes for the production of valuable pharmaceutical products in seeds, such as polyunsaturated fatty acids found in fish oils, or pro-vitamin A where at least three transgenes are required to assemble the entire metabolic pathways

    A pilot randomised controlled trial investigating a mindfulness-based stress reduction (MBSR) intervention in individuals with pulmonary arterial hypertension (PAH): the PATHWAYS study

    Get PDF
    Background: Pulmonary arterial hypertension (PAH) is an uncommon condition with progressive heart failure and premature death. Treatment costs up to ÂŁ120,000 per patient per year, and the psychological burden of PAH is substantial. Mindfulness-based stress reduction (MBSR) is an intervention with the potential to reduce this burden, but to date, it has not been applied to people with pulmonary hypertension. We wished to determine whether a trial of MBSR for people with PAH would be feasible. Methods: A customised gentle MBSR programme of eight sessions was developed for people with physical disability due to PAH, and they were randomised to group-based MBSR or treatment as usual. The completeness of outcome measures including Beck Anxiety Index, Beck Depression Inventory and standard physical assessment at 3 months after randomisation were recorded. Health care utilisation was measured. Attendance at the sessions and the costs involved in delivering the intervention were assessed. Semi-structured interviews were conducted to explore the acceptability of the MBSR intervention and when appropriate the reasons for trial non-participation. Results: Fifty-two patients were recruited, but only 34 were randomised due to patients finding it difficult to travel to sessions. Twenty-two completed all questionnaires and attended all clinics, both routine and additional in order to collect outcomes measures. The MSBR sessions were delivered in Bristol, Cardiff and London, costing, on average, between ÂŁ2234 (Cardiff) and ÂŁ4128 (London) per patient to deliver. Attendance at each session averaged between two patients in Bristol and Cardiff and three in London. For those receiving treatment as usual, clinician blinding was achievable. Interviews revealed that people who attended MBSR found it interesting and helpful in managing their symptoms and minimising the psychological component of their disease. Conclusions: We found that attendance at group MBSR was poor in people with chronic PAH within the context of a trial. Achieving better MBSR intervention attendance or use of an Internet-based programme might maximise the benefit of MBSR

    Saccharomyces cerevisiae chitin biosynthesis activation by N-acetylchitooses depends on size and structure of chito-oligosaccharides

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To explore chitin synthesis initiation, the effect of addition of exogenous oligosaccharides on <it>in vitro </it>chitin synthesis was studied. Oligosaccharides of various natures and lengths were added to a chitin synthase assay performed on a <it>Saccharomyces cerevisiae </it>membrane fraction.</p> <p>Findings</p> <p><it>N</it>-acetylchito-tetra, -penta and -octaoses resulted in 11 to 25% [<sup>14</sup>C]-GlcNAc incorporation into [<sup>14</sup>C]-chitin, corresponding to an increase in the initial velocity. The activation appeared specific to <it>N</it>-acetylchitooses as it was not observed with oligosaccharides in other series, such as beta-(1,4), beta-(1,3) or alpha-(1,6) glucooligosaccharides.</p> <p>Conclusions</p> <p>The effect induced by the <it>N</it>-acetylchitooses was a saturable phenomenon and did not interfere with free GlcNAc and trypsin which are two known activators of yeast chitin synthase activity <it>in vitro</it>. The magnitude of the activation was dependent on both oligosaccharide concentration and oligosaccharide size.</p

    Evolution of major milk proteins in Mus musculus and Mus spretus mouse species: a genoproteomic analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Due to their high level of genotypic and phenotypic variability, <it>Mus spretus </it>strains were introduced in laboratories to investigate the genetic determinism of complex phenotypes including quantitative trait loci. <it>Mus spretus </it>diverged from <it>Mus musculus </it>around 2.5 million years ago and exhibits on average a single nucleotide polymorphism (SNP) in every 100 base pairs when compared with any of the classical laboratory strains. A genoproteomic approach was used to assess polymorphism of the major milk proteins between SEG/Pas and C57BL/6J, two inbred strains of mice representative of <it>Mus spretus </it>and <it>Mus musculus </it>species, respectively.</p> <p>Results</p> <p>The milk protein concentration was dramatically reduced in the SEG/Pas strain by comparison with the C57BL/6J strain (34 ± 9 g/L <it>vs</it>. 125 ± 12 g/L, respectively). Nine major proteins were identified in both milks using RP-HPLC, bi-dimensional electrophoresis and MALDI-Tof mass spectrometry. Two caseins (ÎČ and α<sub>s1</sub>) and the whey acidic protein (WAP), showed distinct chromatographic and electrophoresis behaviours. These differences were partly explained by the occurrence of amino acid substitutions and splicing variants revealed by cDNA sequencing. A total of 34 SNPs were identified in the coding and 3'untranslated regions of the SEG/Pas <it>Csn1s1 </it>(11), <it>Csn2 </it>(7) and <it>Wap </it>(8) genes. In addition, a 3 nucleotide deletion leading to the loss of a serine residue at position 93 was found in the SEG/Pas <it>Wap </it>gene.</p> <p>Conclusion</p> <p>SNP frequencies found in three milk protein-encoding genes between <it>Mus spretus </it>and <it>Mus musculus </it>is twice the values previously reported at the whole genome level. However, the protein structure and post-translational modifications seem not to be affected by SNPs characterized in our study. Splicing mechanisms (cryptic splice site usage, exon skipping, error-prone junction sequence), already identified in casein genes from other species, likely explain the existence of multiple α<sub>s1</sub>-casein isoforms both in SEG/Pas and C57BL/6J strains. Finally, we propose a possible mechanism by which the hallmark tandem duplication of a 18-nt exon (14 copies) may have occurred in the mouse genome.</p
    • 

    corecore