45 research outputs found

    A Mixed-Method Study to Determine the Benefits of Periconceptional Folic Acid Supplementation and Effects of Folic Acid Deficiency in Mothers on Birth Outcomes.

    Get PDF
    BACKGROUND: Evidence from high income countries shows mothers who are supplemented with folic acid in their periconceptional period and early pregnancy have significantly reduced adverse outcomes like birth defects. However, in India there is a paucity of data on association of birth defects and folic acid supplementation. We identified a few important questions to be answered using separate scientific methods and then planned to triangulate the information. OBJECTIVE: In this paper, we describe the protocol of our study that aims to determine the association of folic acid and pregnancy outcomes like neural tube defects (NTDs) and orofacial clefts (OFCs). We decided to fill the gaps in knowledge from India to determine public health consequences of folic acid deficiency and factors influencing dietary and periconceptional consumption of folic acid. METHODS: The proposed study will be carried out in five stages and will examine the questions related to folic acid deficiency across selected locations in South and North India. The study will be carried out over a period of 4 years through the hierarchical evidence-based approach. At first a systematic review was conducted to pool the current birth prevalence of NTDs and orofacial clefts OFCs in India. To investigate the population prevalence, we plan to use the key informant method to determine prevalence of NTDs and OFCs. To determine the normal serum estimates of folic acid, iron, and vitamin B12 among Indian women (15-35 years), we will conduct a population-based, cross-sectional study. We will further strengthen the evidence of association between OFCs and folic acid by conducting a hospital-based, case-control study across three locations of India. Lastly, using qualitative methods we will understand community and health workers perspective on factors that decide the intake of folic acid supplements. RESULTS: This study will provide evidence on the community prevalence of birth defects and prevalence folic acid and vitamin B12 deficiency in the community. The case-control study will help understand the association of folic acid deficiency with OFCs. CONCLUSIONS: The results from this study are intended to strengthen the evidence base in childhood disability for planning and policy initiatives

    Microglia and Microglia-Like Cell Differentiated from DC Inhibit CD4 T Cell Proliferation

    Get PDF
    The central nervous system (CNS) is generally regarded as a site of immune privilege, whether the antigen presenting cells (APCs) are involved in the immune homeostasis of the CNS is largely unknown. Microglia and DCs are major APCs in physiological and pathological conditions, respectively. In this work, primary microglia and microglia-like cells obtained by co-culturing mature dendritic cells with CNS endothelial cells in vitro were functional evaluated. We found that microglia not only cannot prime CD4 T cells but also inhibit mature DCs (maDCs) initiated CD4 T cells proliferation. More importantly, endothelia from the CNS can differentiate maDCs into microglia-like cells (MLCs), which possess similar phenotype and immune inhibitory function as microglia. Soluble factors including NO lie behind the suppression of CD4 T cell proliferation induced by both microglia and MLCs. All the data indicate that under physiological conditions, microglia play important roles in maintaining immune homeostasis of the CNS, whereas in a pathological situation, the infiltrated DCs can be educated by the local microenvironment and differentiate into MLCs with inhibitory function

    Ligand Specificity of Group I Biotin Protein Ligase of Mycobacterium tuberculosis

    Get PDF
    BACKGROUND: Fatty acids are indispensable constituents of mycolic acids that impart toughness & permeability barrier to the cell envelope of M. tuberculosis. Biotin is an essential co-factor for acetyl-CoA carboxylase (ACC) the enzyme involved in the synthesis of malonyl-CoA, a committed precursor, needed for fatty acid synthesis. Biotin carboxyl carrier protein (BCCP) provides the co-factor for catalytic activity of ACC. METHODOLOGY/PRINCIPAL FINDINGS: BPL/BirA (Biotin Protein Ligase), and its substrate, biotin carboxyl carrier protein (BCCP) of Mycobacterium tuberculosis (Mt) were cloned and expressed in E. coli BL21. In contrast to EcBirA and PhBPL, the approximately 29.5 kDa MtBPL exists as a monomer in native, biotin and bio-5'AMP liganded forms. This was confirmed by molecular weight profiling by gel filtration on Superdex S-200 and Dynamic Light Scattering (DLS). Computational docking of biotin and bio-5'AMP to MtBPL show that adenylation alters the contact residues for biotin. MtBPL forms 11 H-bonds with biotin, relative to 35 with bio-5'AMP. Docking simulations also suggest that bio-5'AMP hydrogen bonds to the conserved 'GRGRRG' sequence but not biotin. The enzyme catalyzed transfer of biotin to BCCP was confirmed by incorporation of radioactive biotin and by Avidin blot. The K(m) for BCCP was approximately 5.2 microM and approximately 420 nM for biotin. MtBPL has low affinity (K(b) = 1.06x10(-6) M) for biotin relative to EcBirA but their K(m) are almost comparable suggesting that while the major function of MtBPL is biotinylation of BCCP, tight binding of biotin/bio-5'AMP by EcBirA is channeled for its repressor activity. CONCLUSIONS/SIGNIFICANCE: These studies thus open up avenues for understanding the unique features of MtBPL and the role it plays in biotin utilization in M. tuberculosis

    Diversity in Functional Organization of Class I and Class II Biotin Protein Ligase

    Get PDF
    The cell envelope of Mycobacterium tuberculosis (M.tuberculosis) is composed of a variety of lipids including mycolic acids, sulpholipids, lipoarabinomannans, etc., which impart rigidity crucial for its survival and pathogenesis. Acyl CoA carboxylase (ACC) provides malonyl-CoA and methylmalonyl-CoA, committed precursors for fatty acid and essential for mycolic acid synthesis respectively. Biotin Protein Ligase (BPL/BirA) activates apo-biotin carboxyl carrier protein (BCCP) by biotinylating it to an active holo-BCCP. A minimal peptide (Schatz), an efficient substrate for Escherichia coli BirA, failed to serve as substrate for M. tuberculosis Biotin Protein Ligase (MtBPL). MtBPL specifically biotinylates homologous BCCP domain, MtBCCP87, but not EcBCCP87. This is a unique feature of MtBPL as EcBirA lacks such a stringent substrate specificity. This feature is also reflected in the lack of self/promiscuous biotinylation by MtBPL. The N-terminus/HTH domain of EcBirA has the self-biotinable lysine residue that is inhibited in the presence of Schatz peptide, a peptide designed to act as a universal acceptor for EcBirA. This suggests that when biotin is limiting, EcBirA preferentially catalyzes, biotinylation of BCCP over self-biotinylation. R118G mutant of EcBirA showed enhanced self and promiscuous biotinylation but its homologue, R69A MtBPL did not exhibit these properties. The catalytic domain of MtBPL was characterized further by limited proteolysis. Holo-MtBPL is protected from proteolysis by biotinyl-5′ AMP, an intermediate of MtBPL catalyzed reaction. In contrast, apo-MtBPL is completely digested by trypsin within 20 min of co-incubation. Substrate selectivity and inability to promote self biotinylation are exquisite features of MtBPL and are a consequence of the unique molecular mechanism of an enzyme adapted for the high turnover of fatty acid biosynthesis

    Heterogeneous Glycation of Cancellous Bone and Its Association with Bone Quality and Fragility

    Get PDF
    Non-enzymatic glycation (NEG) and enzymatic biochemical processes create crosslinks that modify the extracellular matrix (ECM) and affect the turnover of bone tissue. Because NEG affects turnover and turnover at the local level affects microarchitecture and formation and removal of microdamage, we hypothesized that NEG in cancellous bone is heterogeneous and accounts partly for the contribution of microarchitecture and microdamage on bone fragility. Human trabecular bone cores from 23 donors were subjected to compression tests. Mechanically tested cores as well as an additional 19 cores were stained with lead-uranyl acetate and imaged to determine microarchitecture and measure microdamage. Post-yield mechanical properties were measured and damaged trabeculae were extracted from a subset of specimens and characterized for the morphology of induced microdamage. Tested specimens and extracted trabeculae were quantified for enzymatic and non-enzymatic crosslink content using a colorimetric assay and Ultra-high Performance Liquid Chromatography (UPLC). Results show that an increase in enzymatic crosslinks was beneficial for bone where they were associated with increased toughness and decreased microdamage. Conversely, bone with increased NEG required less strain to reach failure and were less tough. NEG heterogeneously modified trabecular microarchitecture where high amounts of NEG crosslinks were found in trabecular rods and with the mechanically deleterious form of microdamage (linear microcracks). The extent of NEG in tibial cancellous bone was the dominant predictor of bone fragility and was associated with changes in microarchitecture and microdamage

    Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    Get PDF
    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.</p

    Not Available

    No full text
    Not AvailableThis study reports the distribution of enterotoxigenic determinants among staphylococci and the susceptibility of staphylococci to various classes of antibiotics. We observed all the isolates as resistant to beta-lactam antibiotics and a few as resistant to non-beta-lactam antibiotics such as clindamycin (47.4%), erythromycin (44.7%), gentamicin (23.7%), norfloxacin (34.2%), tetracycline (26.3%), trimethoprim-sulfamethoxazole (15.8%) etc. The resistance of S. sciuri (n = 1) and S. haemolyticus (n = 1) to rifampicin and intermediate resistance of S. gallinarum (n = 2) to teicoplanin, a high-end antibiotic, are also observed in this study. The multidrug- resistance (≥ 3 classes of antibiotics) was recorded in 23 (60.5%) isolates. The virulomes such as sea, seb, seg and sei were identified predominantly in S. haemolyticus. Surprisingly, certain isolates which were phenotypically confirmed as biofilm-producers by Congo red agar (CRA) test did not harbor biofilm-associated loci. This implies the protein-mediated mechanism of biofilm formation as an alternative to polysaccharide intercellular adhesin (PIA) in staphylococci. However, icaAD locus which encodes PIA was identified in 10 (26.3%) isolates and the eno locus, encoding elastin-binding protein which can accelerate the biofilm production, is identified in all the isolates. The possession of type V SCCmec elements by the S. haemolyticus (15.8%) raised the concern about the rapid dissemination of mecA gene to other species of staphylococci including the virulent S. aureus. In short, this study acknowledges the toxigenicity of coagulase-negative staphylococci (CoNS). Through this study, surveillance of antimicrobial resistance and transference of virulomes in staphylococci is warrantedNot Availabl

    Not Available

    No full text
    Not AvailableThe epidemiology and toxigenicity of MRSA in the fishery environment are poorly understood. In this study, methicillin-resistant Staphylococcus aureus (MRSA) (n = 1) and methicillin-susceptible S. aureus (MSSA) (n=2) from retail fish were subjected to comprehensive genome analysis. Here, we report the occurrence of ST672-MRSA-IV/t1309 and ST5-MSSA/t105 for the first time from India in the fishery environment. The resistome of the isolates was in concordance with their phenotypic resistance pattern. Phenotypically, the resistance profile of MSSA isolates (n = 2) was AMP-CLI-ERY-NOR-PEN. For MRSA (n = 1), it was AMP-CFZ-CLI-ERY-NOR-OXA-PEN. The antibiotic efflux genes and mutations in the antibiotic target accounted for fluoroquinolone resistance whereas methicillin resistance was conferred through possession of a mecA gene. Similarly, all three isolates carried a similar array of virulence factors. The conjugative plasmid inc18 and rep family 10 plasmids were found in two of the three isolates. This study documents the MRSA carrying SCCmec IVa elements which are the markers of community-associated MRSA (CA-MRSA). Through the possession of SCCmec IV elements, which are smaller than other types of SCCmec, MRSA can contribute to the rapid dissemination of antimicrobial resistance and virulence factors. In short, our findings highlighted that the presence of ST672-MRSA in fishery environments may pose a risk to human healthNot Availabl
    corecore