176 research outputs found

    The Statistical Mechanics of Horizons and Black Hole Thermodynamics

    Get PDF
    Although we know that black holes are characterized by a temperature and an entropy, we do not yet have a satisfactory microscopic ``statistical mechanical'' explanation for black hole thermodynamics. I describe a new approach that attributes the thermodynamic properties to ``would-be gauge'' degrees of freedom that become dynamical on the horizon. For the (2+1)-dimensional black hole, this approach gives the correct entropy. (Talk given at the Pacific Conference on Gravitation and Cosmology, Seoul, February 1996.)Comment: 11 pages, LaTe

    Proton-Binding Sites of Acid-Sensing Ion Channel 1

    Get PDF
    Acid-sensing ion channels (ASICs) are proton-gated cation channels that exist throughout the mammalian central and peripheral nervous systems. ASIC1 is the most abundant of all the ASICs and is likely to modulate synaptic transmission. Identifying the proton-binding sites of ASCI1 is required to elucidate its pH-sensing mechanism. By using the crystal structure of ASIC1, the protonation states of each titratable site of ASIC1 were calculated by solving the Poisson-Boltzmann equation under conditions wherein the protonation states of all these sites are simultaneously in equilibrium. Four acidic-acidic residue pairs—Asp238-Asp350, Glu220-Asp408, Glu239-Asp346, and Glu80-Glu417—were found to be highly protonated. In particular, the Glu80-Glu417 pair in the inner pore was completely protonated and possessed 2 H+, implying its possible importance as a proton-binding site. The pKa of Glu239, which forms a pair with a possible pH-sensing site Asp346, differs among each homo-trimer subunit due to the different H-bond pattern of Thr237 in the different protein conformations of the subunits. His74 possessed a pKa of ≈6–7. Conservation of His74 in the proton-sensitive ASIC3 that lacks a residue corresponding to Asp346 may suggest its possible pH-sensing role in proton-sensitive ASICs

    Breast Cancer Exosome-like Microvesicles and Salivary Gland Cells Interplay Alters Salivary Gland Cell-Derived Exosome-like Microvesicles In Vitro

    Get PDF
    Saliva is a useful biofluid for the early detection of disease, but how distal tumors communicate with the oral cavity and create disease-specific salivary biomarkers remains unclear. Using an in vitro breast cancer model, we demonstrated that breast cancer-derived exosome-like microvesicles are capable of interacting with salivary gland cells, altering the composition of their secreted exosome-like microvesicles. We found that the salivary gland cells secreted exosome-like microvesicles encapsulating both protein and mRNA. We also showed that the interaction with breast cancer-derived exosome-like microvesicles communicated and activated the transcriptional machinery of the salivary gland cells. Thus, the interaction altered the composition of the salivary gland cell-derived exosome-like microvesicles on both the transcriptomically and proteomically

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Comparative genomic hybridization detects many recurrent imbalances in central nervous system primitive neuroectodermal tumours in children

    Get PDF
    A series of 23 children with primitive neuroectodermal tumours (PNET) were analysed with comparative genomic hybridization (CGH). Multiple chromosomal imbalances have been detected in 20 patients. The most frequently involved chromosome was chromosome 17, with a gain of 17q (11 cases) and loss of 17p (eight cases). Further recurrent copy number changes were detected. Extra copies of chromosome 7 were present in nine patients and gains of 1q were detected in six patients. A moderate genomic amplification was detected in one patient, involving two sites on 3p and the whole 12p. Losses were more frequent, and especially involved the chromosomes 11 (nine cases), 10q (eight cases), 8 (six cases), X (six patients) and 3 (five cases), and part of chromosome 9 (five cases). These recurrent chromosomal changes may highlight locations of novel genes with an important role in the development and/or progression of PNET. © 1999 Cancer Research Campaig

    How Thioredoxin Dissociates Its Mixed Disulfide

    Get PDF
    The dissociation mechanism of the thioredoxin (Trx) mixed disulfide complexes is unknown and has been debated for more than twenty years. Specifically, opposing arguments for the activation of the nucleophilic cysteine as a thiolate during the dissociation of the complex have been put forward. As a key model, the complex between Trx and its endogenous substrate, arsenate reductase (ArsC), was used. In this structure, a Cys29Trx-Cys89ArsC intermediate disulfide is formed by the nucleophilic attack of Cys29Trx on the exposed Cys82ArsC-Cys89ArsC in oxidized ArsC. With theoretical reactivity analysis, molecular dynamics simulations, and biochemical complex formation experiments with Cys-mutants, Trx mixed disulfide dissociation was studied. We observed that the conformational changes around the intermediate disulfide bring Cys32Trx in contact with Cys29Trx. Cys32Trx is activated for its nucleophilic attack by hydrogen bonds, and Cys32Trx is found to be more reactive than Cys82ArsC. Additionally, Cys32Trx directs its nucleophilic attack on the more susceptible Cys29Trx and not on Cys89ArsC. This multidisciplinary approach provides fresh insights into a universal thiol/disulfide exchange reaction mechanism that results in reduced substrate and oxidized Trx

    Phototrophic biofilms and their potential applications

    Get PDF
    Phototrophic biofilms occur on surfaces exposed to light in a range of terrestrial and aquatic environments. Oxygenic phototrophs like diatoms, green algae, and cyanobacteria are the major primary producers that generate energy and reduce carbon dioxide, providing the system with organic substrates and oxygen. Photosynthesis fuels processes and conversions in the total biofilm community, including the metabolism of heterotrophic organisms. A matrix of polymeric substances secreted by phototrophs and heterotrophs enhances the attachment of the biofilm community. This review discusses the actual and potential applications of phototrophic biofilms in wastewater treatment, bioremediation, fish-feed production, biohydrogen production, and soil improvement

    Situating Universal Design Architecture: Designing With Whom?

    Get PDF
    Purpose: To respond to growing calls for a theoretical unpacking of Universal Design (UD), a disparate movement cohering around attempts to design spaces and technologies that seek to allow use by all people (to the fullest extent possible). The on-going embedding of UD into architectural practice and pedagogy represents an opportune juncture at which to draw learning from other distinct-but-related transformatory architectural movements. Methods: Sociological-theoretical commentary. Results: UD has to date, and necessarily, been dominated by the practice contexts from which it emerged. Appealing as a short-hand for description of “designing-for-all”, in most cases UD has come to stand in as a term to signal a general intent in this direction and as an umbrella term for the range of technical design resources that have been developed under these auspices. There remains a fundamental ambivalence vis-à-vis the question of users’ power/capacity to influence decision-making in the design process in UD; technically-oriented typologies of bodies predominate in influential UD architectural accounts. Conclusions: UD represents rich technical and pedagogical resources for those architects committed to transforming the existing built environment so as to be less hostile to a wide range of users. However, within UD, unpacking the social role of the professional architect vis-à-vis a variety of publics is an important, but hitherto underdeveloped, challenge; issues concerning professional-citizen power relations continue to animate parallel architectural politics, and UD can both contribute and draw much from these on-going explorations. Implications for Rehabilitation Universal Design (UD) architecture shares a close affinity with rehabilitation practice, with the creation of built environments that allow use by individuals with a wide range of capacities a priority for both. While an effective communicative “bridge” between professions, UD’s deployment typically leaves unspoken the capacity of users to meaningfully affect decision-making in the design process. UD architecture has much to draw from, and contribute to, parallel movements in “participatory architectural design”; debates therein have illuminated much about the social practices underpinning designing for difference. UD could engage more fully with questions relating to the social and political role of the architect

    Ring-like N-fold Models of Aβ42 fibrils

    Get PDF
    When assembling as fibrils Aβ40 peptides can only assume U-shaped conformations while Aβ42 can also arrange as S-shaped three-stranded chains. We show that this allows Aβ42 peptides to assemble pore-like structures that may explain their higher toxicity. For this purpose, we develop a scalable model of ring-like assemblies of S-shaped Aβ1–42 chains and study the stability and structural properties of these assemblies through atomistic molecular dynamics simulations. We find that the proposed arrangements are in size and symmetry compatible with experimentally observed Aβ assemblies. We further show that the interior pore in our models allows for water leakage as a possible mechanism of cell toxicity of Aβ42 amyloids.Simulations were done on the SCHOONER cluster of the University of Oklahoma and the Extreme Science and Engineering Discovery Environment (XSEDE) which is supported by NSF under grant ACI-1053575. We acknowledge financial support from NSF CHE-1266256. Open access fees fees for this article provided whole or in part by OU Libraries Open Access Fund.Ye

    Exploring new physics frontiers through numerical relativity

    Get PDF
    The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology
    corecore