2,031 research outputs found
Quantum corrections and black hole spectroscopy
In the work \cite{BRM,RBE}, black hole spectroscopy has been successfully
reproduced in the tunneling picture. As a result, the derived entropy spectrum
of black hole in different gravity (including Einstein's gravity,
Einstein-Gauss-Bonnet gravity and Ho\v{r}ava-Lifshitz gravity) are all evenly
spaced, sharing the same forms as , where physical process is only
confined in the semiclassical framework. However, the real physical picture
should go beyond the semiclassical approximation. In this case, the physical
quantities would undergo higher-order quantum corrections, whose effect on
different gravity shares in different forms. Motivated by these facts, in this
paper we aim to observe how quantum corrections affect black hole spectroscopy
in different gravity. The result shows that, in the presence of higher-order
quantum corrections, black hole spectroscopy in different gravity still shares
the same form as , further confirming the entropy quantum is universal
in the sense that it is not only independent of black hole parameters, but also
independent of higher-order quantum corrections. This is a desiring result for
the forthcoming quantum gravity theory.Comment: 14 pages, no figure, use JHEP3.cls. to be published in JHE
Back reaction, emission spectrum and entropy spectroscopy
Recently, an interesting work, which reformulates the tunneling framework to
directly produce the Hawking emission spectrum and entropy spectroscopy in the
tunneling picture, has been received a broad attention. However, during the
emission process, most related observations have not incorporated the effects
of back reaction on the background spacetime, whose derivations are therefore
not the desiring results for the real physical process. With this point as a
central motivation, in this paper we suitably adapt the \emph{reformulated}
tunneling framework so that it can well accommodate the effects of back
reaction to produce the Hawking emission spectrum and entropy spectroscopy.
Consequently, we interestingly find that, when back reaction is considered, the
Parikh-Wilczek's outstanding observations that, an isolated radiating black
hole has an unitary-evolving emission spectrum that is \emph{not} precisely
thermal, but is related to the change of the Bekenstein-Hawking entropy, can
also be reproduced in the reformulated tunneling framework, meanwhile the
entropy spectrum has the same form as that without inclusion of back reaction,
which demonstrates the entropy quantum is \emph{independent} of the effects of
back reaction. As our final analysis, we concentrate on the issues of the black
hole information, but \emph{unfortunately} find that, even including the
effects of back reaction and higher-order quantum corrections, such tunneling
formalism can still not provide a mechanism for preserving the black hole
information.Comment: 16 pages, no figure, use JHEP3.cls. to be published in JHE
Non-intrusive polynomial chaos method applied to full-order and reduced problems in computational fluid dynamics: A comparison and perspectives
In this work, Uncertainty Quantification (UQ) based on non-intrusive Polynomial Chaos Expansion (PCE) is applied to the CFD problem of the flow past an airfoil with parameterized angle of attack and inflow velocity. To limit the computational cost associated with each of the simulations required by the non-intrusive UQ algorithm used, we resort to a Reduced Order Model (ROM) based on Proper Orthogonal Decomposition (POD)-Galerkin approach. A first set of results is presented to characterize the accuracy of the POD-Galerkin ROM developed approach with respect to the Full Order Model (FOM) solver (OpenFOAM). A further analysis is then presented to assess how the UQ results are affected by substituting the FOM predictions with the surrogate ROM ones
Amelioration of galactosamine-induced nephrotoxicity by a protein isolated from the leaves of the herb, Cajanus indicus L
<p>Abstract</p> <p>Background</p> <p>Galactosamine (GalN), an established experimental toxin, mainly causes liver injury via the generation of free radicals and depletion of UTP nucleotides. Renal failure is often associated with end stage liver damage. GalN intoxication also induces renal dysfunction in connection with hepatic disorders. Present study was designed to find out the effect of a protein isolated from the leaves of the herb <it>Cajanus indicus </it>against GalN induced renal damage.</p> <p>Methods</p> <p>Both preventive as well as curative effect of the protein was investigated in the study. GalN was administered intraperitoneally at a dose of 800 mg/kg body weight for 3 days pre and post to protein treatment at an intraperitoneal dose of 2 mg/kg body weight for 4 days. The activities of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione-S-transferase (GST), levels of cellular metabolites, reduced glutathione (GSH), total thiols, oxidized glutathione (GSSG) and lipid peroxidation end products were determined to estimate the status of the antioxidative defense system. In addition, serum creatinine and urea nitrogen (UN) levels were also measured as a marker of nephrotoxicity.</p> <p>Results</p> <p>Results showed that GalN treatment significantly increased the serum creatinine and UN levels compared to the normal group of mice. The extent of lipid peroxidation and the level of GSSG were also enhanced by the GalN intoxication whereas the activities of antioxidant enzymes SOD, CAT, GR and GST as well as the levels of total thiols and GSH were decreased in the kidney tissue homogenates. Protein treatment both prior and post to the toxin administration successfully altered the effects in the experimental mice.</p> <p>Conclusion</p> <p>Our study revealed that GalN caused a severe oxidative insult in the kidney. Protein treatment both pre and post to the GalN intoxication could protect the kidney tissue against GalN induced oxidative stress. As GalN induced severe hepatotoxicity followed by renal failure, the protective role of the protein against GalN induced renal damages is likely to be an indirect effect. Since the protein possess hepatoprotective activity, it may first ameliorate GalN-induced liver damage and consequently the renal disorders are reduced. To the best of our knowledge, this is probably the first report describing GalN-induced oxidative stress in renal damages and the protective role of a plant protein molecule against it.</p
Assessing Historical Fish Community Composition Using Surveys, Historical Collection Data, and Species Distribution Models
Accurate establishment of baseline conditions is critical to successful management and habitat restoration. We demonstrate the ability to robustly estimate historical fish community composition and assess the current status of the urbanized Barton Creek watershed in central Texas, U.S.A. Fish species were surveyed in 2008 and the resulting data compared to three sources of fish occurrence information: (i) historical records from a museum specimen database and literature searches; (ii) a nearly identical survey conducted 15 years earlier; and (iii) a modeled historical community constructed with species distribution models (SDMs). This holistic approach, and especially the application of SDMs, allowed us to discover that the fish community in Barton Creek was more diverse than the historical data and survey methods alone indicated. Sixteen native species with high modeled probability of occurrence within the watershed were not found in the 2008 survey, seven of these were not found in either survey or in any of the historical collection records. Our approach allowed us to more rigorously establish the true baseline for the pre-development fish fauna and then to more accurately assess trends and develop hypotheses regarding factors driving current fish community composition to better inform management decisions and future restoration efforts. Smaller, urbanized freshwater systems, like Barton Creek, typically have a relatively poor historical biodiversity inventory coupled with long histories of alteration, and thus there is a propensity for land managers and researchers to apply inaccurate baseline standards. Our methods provide a way around that limitation by using SDMs derived from larger and richer biodiversity databases of a broader geographic scope. Broadly applied, we propose that this technique has potential to overcome limitations of popular bioassessment metrics (e.g., IBI) to become a versatile and robust management tool for determining status of freshwater biotic communities
Precision measurement of the top quark mass from dilepton events at CDF II
We report a measurement of the top quark mass, M_t, in the dilepton decay
channel of
using an integrated luminosity of 1.0 fb^{-1} of p\bar{p} collisions collected
with the CDF II detector. We apply a method that convolutes a leading-order
matrix element with detector resolution functions to form event-by-event
likelihoods; we have enhanced the leading-order description to describe the
effects of initial-state radiation. The joint likelihood is the product of the
likelihoods from 78 candidate events in this sample, which yields a measurement
of M_{t} = 164.5 \pm 3.9(\textrm{stat.}) \pm 3.9(\textrm{syst.})
\mathrm{GeV}/c^2, the most precise measurement of M_t in the dilepton channel.Comment: 7 pages, 2 figures, version includes changes made prior to
publication by journa
Measurement of the Ratios of Branching Fractions B(Bs -> Ds pi pi pi) / B(Bd -> Dd pi pi pi) and B(Bs -> Ds pi) / B(Bd -> Dd pi)
Using 355 pb^-1 of data collected by the CDF II detector in \ppbar collisions
at sqrt{s} = 1.96 TeV at the Fermilab Tevatron, we study the fully
reconstructed hadronic decays B -> D pi and B -> D pi pi pi. We present the
first measurement of the ratio of branching fractions B(Bs -> Ds pi pi pi) /
B(Bd -> Dd pi pi pi) = 1.05 pm 0.10 (stat) pm 0.22 (syst). We also update our
measurement of B(Bs -> Ds pi) / B(Bd -> Dd pi) to 1.13 pm 0.08 (stat) pm 0.23
(syst) improving the statistical uncertainty by more than a factor of two. We
find B(Bs -> Ds pi) = [3.8 pm 0.3 (stat) pm 1.3 (syst)] \times 10^{-3} and B(Bs
-> Ds pi pi pi) = [8.4 pm 0.8 (stat) pm 3.2 (syst)] \times 10^{-3}.Comment: 7 pages, 2 figure
Cross Section Measurements of High- Dilepton Final-State Processes Using a Global Fitting Method
We present a new method for studying high- dilepton events
(, , ) and simultaneously
extracting the production cross sections of , , and p\bar{p} \to \ztt at a center-of-mass energy of TeV. We perform a likelihood fit to the dilepton data in a parameter
space defined by the missing transverse energy and the number of jets in the
event. Our results, which use of data recorded with the CDF
II detector at the Fermilab Tevatron Collider, are pb, pb, and
\sigma(\ztt) =291^{+50}_{-46} pb.Comment: 20 pages, 2 figures, to be submitted to PRD-R
- …