11,577 research outputs found

    Public-private partnerships: Task interdependence and contractibility

    Get PDF
    We examine the proper scope of public-private partnerships in the context of a project consisting of two tasks, building and operation of a facility. We investigate the optimal arrangement regarding bundling versus unbundling and private ownership versus public ownership. Like Bennett and Iossa (2006), we assume that the innovative activity in the building stage has impacts on, among other things, the subsequent operational cost. We relax the nature of task interdependence and study different contractual frameworks. The general insight is that given limitations in contractibility, contrary to common sense, complementarity between tasks favors unbundling over bundling. © 2010 Elsevier B.V.postprin

    DEVELOPMENT OF AN ADVANCED HIGH PRESSURE RATIO TRANSONIC FAN STAGE. PART-I: DESIGN AND ANALYSIS

    Get PDF
    A high performance fan stage of pressure ratio 2.0 is being designed and developed under a joint programme between Chinese Aeronautical Establishment (CAE) China and National Aerospace Laboratories (NAL), Bangalore, India.. Special features of the aerodynamic design are i) forward blade sweep and lean to increase the ability to bear intake distortion ii) reverse camber fan tip to reduce losses via pre compression iii) low aspect ratio of the blades to maximize stall margin. The blade will be fabricated using laminates of Carbon/Epoxy composites with tip shroud so as to limit the blade stress and deformation. Stress analysis was carried out using MSC/NASTRAN Finite Element Package. The fan stage has undergone a series of design improvements. Comparison of typical results obtained at NAL and BUAA is shown for the final version of the fan stage TTT98-29

    Rapid-INR: Storage Efficient CPU-free DNN Training Using Implicit Neural Representation

    Full text link
    Implicit Neural Representation (INR) is an innovative approach for representing complex shapes or objects without explicitly defining their geometry or surface structure. Instead, INR represents objects as continuous functions. Previous research has demonstrated the effectiveness of using neural networks as INR for image compression, showcasing comparable performance to traditional methods such as JPEG. However, INR holds potential for various applications beyond image compression. This paper introduces Rapid-INR, a novel approach that utilizes INR for encoding and compressing images, thereby accelerating neural network training in computer vision tasks. Our methodology involves storing the whole dataset directly in INR format on a GPU, mitigating the significant data communication overhead between the CPU and GPU during training. Additionally, the decoding process from INR to RGB format is highly parallelized and executed on-the-fly. To further enhance compression, we propose iterative and dynamic pruning, as well as layer-wise quantization, building upon previous work. We evaluate our framework on the image classification task, utilizing the ResNet-18 backbone network and three commonly used datasets with varying image sizes. Rapid-INR reduces memory consumption to only 5% of the original dataset size and achieves a maximum 6×\times speedup over the PyTorch training pipeline, as well as a maximum 1.2x speedup over the DALI training pipeline, with only a marginal decrease in accuracy. Importantly, Rapid-INR can be readily applied to other computer vision tasks and backbone networks with reasonable engineering efforts. Our implementation code is publicly available at https://anonymous.4open.science/r/INR-4BF7.Comment: Submitted to ICCAD 2023, under revie

    Boundary Terms, Spinors and Kerr/CFT

    Get PDF
    Similarly as in AdS/CFT, the requirement that the action for spinors be stationary for solutions to the Dirac equation with fixed boundary conditions determines the form of the boundary term that needs to be added to the standard Dirac action in Kerr/CFT. We determine this boundary term and make use of it to calculate the two-point function for spinor fields in Kerr/CFT. This two-point function agrees with the correlator of a two dimensional relativistic conformal field theory.Comment: 15 page

    Exact Speedup Factors for Linear-Time Schedulability Tests for Fixed-Priority Preemptive and Non-preemptive Scheduling

    Get PDF
    In this paper, we investigate the quality of several linear-time schedulability tests for preemptive and non-preemptive fixed-priority scheduling of uniprocessor systems. The metric used to assess the quality of these tests is the resource augmentation bound commonly known as the processor speedup factor. The speedup factor of a schedulability test corresponds to the smallest factor by which the processing speed of a uniprocessor needs to be increased such that any task set that is feasible under an optimal preemptive (non-preemptive) work-conserving scheduling algorithm is guaranteed to be schedulable with preemptive (non-preemptive) fixed priority scheduling if this scheduling test is used, assuming an appropriate priority assignment. We show the surprising result that the exact speedup factors for Deadline Monotonic (DM) priority assignment combined with sufficient linear-time schedulability tests for implicit-, constrained-, and arbitrary-deadline task sets are the same as those obtained for optimal priority assignment policies combined with exact schedulability tests. Thus in terms of the speedup-factors required, there is no penalty in using DM priority assignment and simple linear schedulability tests

    The HSV-1 ICP27 RGG box specifically binds flexible, GC-rich sequences but not G-quartet structures

    Get PDF
    Herpes simplex virus 1 (HSV-1) protein ICP27, an important regulator for viral gene expression, directly recognizes and exports viral RNA through an N-terminal RGG box RNA binding motif, which is necessary and sufficient for RNA binding. An ICP27 N-terminal peptide, including the RGG box RNA binding motif, was expressed and its binding specificity was analyzed using EMSA and SELEX. DNA oligonucleotides corresponding to HSV-1 glycoprotein C (gC) mRNA, identified in a yeast three-hybrid analysis, were screened for binding to the ICP27 N-terminal peptide in EMSA experiments. The ICP27 N-terminus was able to bind most gC substrates. Notably, the ICP27 RGG box was unable to bind G-quartet structures recognized by the RGG domains of other proteins. SELEX analysis identified GC-rich RNA sequences as a common feature of recognition. NMR analysis of SELEX and gC sequences revealed that sequences able to bind to ICP27 did not form secondary structures and conversely, sequences that were not able to bind to ICP27 gave spectra consistent with base-pairing. Therefore, the ICP27 RGG box is unique in its recognition of nucleic acid sequences compared to other RGG box proteins; it prefers flexible, GC-rich substrates that do not form stable secondary structures

    Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2

    Full text link
    The linear dispersion relation in graphene[1,2] gives rise to a surprising prediction: the resistivity due to isotropic scatterers (e.g. white-noise disorder[3] or phonons[4-8]) is independent of carrier density n. Here we show that acoustic phonon scattering[4-6] is indeed independent of n, and places an intrinsic limit on the resistivity in graphene of only 30 Ohm at room temperature (RT). At a technologically-relevant carrier density of 10^12 cm^-2, the mean free path for electron-acoustic phonon scattering is >2 microns, and the intrinsic mobility limit is 2x10^5 cm^2/Vs, exceeding the highest known inorganic semiconductor (InSb, ~7.7x10^4 cm^2/Vs[9]) and semiconducting carbon nanotubes (~1x10^5 cm^2/Vs[10]). We also show that extrinsic scattering by surface phonons of the SiO2 substrate[11,12] adds a strong temperature dependent resistivity above ~200 K[8], limiting the RT mobility to ~4x10^4 cm^2/Vs, pointing out the importance of substrate choice for graphene devices[13].Comment: 16 pages, 3 figure

    Delocalized single-photon Dicke states and the Leggett- Garg inequality in solid state systems

    Full text link
    We show how to realize a single-photon Dicke state in a large one-dimensional array of two- level systems, and discuss how to test its quantum properties. Realization of single-photon Dicke states relies on the cooperative nature of the interaction between a field reservoir and an array of two-level-emitters. The resulting dynamics of the delocalized state can display Rabi-like oscillations when the number of two-level emitters exceeds several hundred. In this case the large array of emitters is essentially behaving like a mirror-less cavity. We outline how this might be realized using a multiple-quantum-well structure and discuss how the quantum nature of these oscillations could be tested with the Leggett-Garg inequality and its extensions.Comment: 29 pages, 5 figures, journal pape

    An approximate model for cancellous bone screw fixation

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2013 Taylor & Francis.This paper presents a finite element (FE) model to identify parameters that affect the performance of an improved cancellous bone screw fixation technique, and hence potentially improve fracture treatment. In cancellous bone of low apparent density, it can be difficult to achieve adequate screw fixation and hence provide stable fracture fixation that enables bone healing. Data from predictive FE models indicate that cements can have a significant potential to improve screw holding power in cancellous bone. These FE models are used to demonstrate the key parameters that determine pull-out strength in a variety of screw, bone and cement set-ups, and to compare the effectiveness of different configurations. The paper concludes that significant advantages, up to an order of magnitude, in screw pull-out strength in cancellous bone might be gained by the appropriate use of a currently approved calcium phosphate cement

    Molecular details of quinolone–DNA interactions: solution structure of an unusually stable DNA duplex with covalently linked nalidixic acid residues and non-covalent complexes derived from it

    Get PDF
    Quinolones are antibacterial drugs that are thought to bind preferentially to disturbed regions of DNA. They do not fall into the classical categories of intercalators, groove binders or electrostatic binders to the backbone. We solved the 3D structure of the DNA duplex (ACGCGU-NA)(2), where NA denotes a nalidixic acid residue covalently linked to the 2′-position of 2′-amino-2′-deoxyuridine, by NMR and restrained torsion angle molecular dynamics (MD). In the complex, the quinolones stack on G:C base pairs of the core tetramer and disrupt the terminal A:U base pair. The displaced dA residues can stack on the quinolones, while the uracil rings bind in the minor groove. The duplex-bridging interactions of the drugs and the contacts of the displaced nucleotides explain the high UV-melting temperature for d(ACGCGU-NA)(2) of up to 53°C. Further, non-covalently linked complexes between quinolones and DNA of the sequence ACGCGT can be generated via MD using constraints obtained for d(ACGCGU-NA)(2). This is demonstrated for unconjugated nalidixic acid and its 6-fluoro derivative. The well-ordered and tightly packed structures thus obtained are compatible with a published model for the quinolone–DNA complex in the active site of gyrases
    corecore