17 research outputs found

    The calcareous brown alga Padina pavonica in southern Britain: population change and tenacity over 300 years

    Get PDF
    Understanding long-term persistence and variability in species populations can help to predict future survival, growth and distribution; however, sustained observations are exceedingly rare. We examine and interpret a remarkable record of the calcareous brown alga Padina pavonica (Phaeophyceae) at its northern limit on the south coast of England (50°N, 1–3°W) from 1680 to 2014, which is probably the longest compilation and review of any marine algal species. Over this period, which extends from the middle of the Little Ice Age to the present, there has been considerable variability in temperature and storminess. We identified a significant number of site extinctions in the second half of the nineteenth century, which coincided with cooler conditions and stormier weather. To interpret thesechanges, we measured recruitment, growth and production of tetraspores at sheltered and exposed sites in 2012–2014, years which had low and high spring temperatures. Potential spore production was greater at the sheltered site due to a longer growing period and survival of larger fronds. Delayed growth in the cooler spring resulted in smaller fronds and lower potential production of tetraspores by early summer. Yet in the warmer year, rapid initial growth caused higher sensitivity to damage and dislodgement by summer storms, which also limited potential spore production. Antagonistic responses to multiple stressors and disturbances make future predictions of survival and distribution difficult. Fronds of Padina pavonica are sensitive to both temperature and physical disturbances, yet vegetative perennation appears to have enabled population persistence and explained the longevity of remaining populations

    Ocean acidification can mediate biodiversity shifts by changing biogenic habitat

    Get PDF
    The effects of ocean acidification (OA) on the structure and complexity of coastal marine biogenic habitat have been broadly overlooked. Here we explore how declining pH and carbonate saturation may affect the structural complexity of four major biogenic habitats. Our analyses predict that indirect effects driven by OA on habitat-forming organisms could lead to lower species diversity in coral reefs, mussel beds and some macroalgal habitats, but increases in seagrass and other macroalgal habitats. Available in situ data support the prediction of decreased biodiversity in coral reefs, but not the prediction of seagrass bed gains. Thus, OA-driven habitat loss may exacerbate the direct negative effects of OA on coastal biodiversity; however, we lack evidence of the predicted biodiversity increase in systems where habitat-forming species could benefit from acidification. Overall, a combination of direct effects and community-mediated indirect effects will drive changes in the extent and structural complexity of biogenic habitat, which will have important ecosystem effects

    Scientific families: Dynasty

    No full text

    Contrasting Effects of Ocean Acidification on Coral Reef “Animal Forests” Versus Seaweed “Kelp Forests”

    No full text
    Ocean acidification is the sustained absorption of anthropogenically derived CO2 and is a major threat to marine ecosystems. Ocean acidification results in the decline of seawater pH (increase in protons) and carbonate ions and increased CO2. Added CO2 could benefit terrestrial forests, but changes in the concentration of any one of aspect of the carbonate system could affect various marine organisms both positively and negatively. One ecosystem under particular threat from ocean acidification is tropical coral reefs, formed predominately by scleractinian coral species that are predicted to be negatively impacted by ocean acidification. In contrast, temperate shallow rocky reefs are dominated by seaweed that forms extensive kelp/seaweed forests; these noncalcareous seaweeds are not predicted to be as negatively impacted by ocean acidification. Tropical coral reef “animal forests” and temperate “kelp forests” both provide three-dimensional habitat for tens of thousands of species, but are characterized by vastly different environmental regimes. The present chapter outlines differences in key environmental parameters (such as nutrients, water motion, and temperature) in these two habitats that could dictate the relative magnitudes of the effects of ocean acidification within them. The vulnerability of key habitat-forming organisms within these habitats and the potential mechanisms behind specific responses to ocean acidification are also discussed
    corecore