10,758 research outputs found
The Unusual Spectral Energy Distribution of a Galaxy Previously Reported to be at Redshift 6.68
Observations of distant galaxies are important both for understanding how
galaxies form and for probing the physical conditions of the universe at the
earliest epochs. It is, however, extremely difficult to identify galaxies at
redshift z>5, because these galaxies are faint and exhibit few spectral
features. In a previous work, we presented observations that supported the
identification of a galaxy at redshift z = 6.68 in a deep STIS field. Here we
present new ground-based photometry of the galaxy. We find that the galaxy
exhibits moderate detections of flux in the optical B and V images that are
inconsistent with the expected absence of flux at wavelength shortward of the
redshifted Lyman-alpha emission line of a galaxy at redshift z>5. In addition,
the new broad-band imaging data not only show flux measurements of this galaxy
that are incompatible with the previous STIS measurement, but also suggest a
peculiar spectral energy distribution that cannot be fit with any galaxy
spectral template at any redshift. We therefore conclude that the redshift
identification of this galaxy remains undetermined.Comment: 9 pages, 2 figures; To appear in Nature (30 November 2000
In Vitro Ultrasound Measurements of Powered and Unpowered Total Cavopulmonary Connection
Three-staged Fontan palliation is performed on children suffering from single ventricle congenital heart disease. The series of surgical procedures reroutes blood from the vena cavae directly to the pulmonary arteries, creating a total cavopulmonary connection (TCPC). A viscous impeller pump (VIP) is currently being developed as a cavopulmonary assist device that can modestly augment cavopulmonary flow, reduce systemic venous pressure, and improve ventricular preload. This study used ultrasound to visualize complex flow patterns in powered and unpowered in vitro mock Fontan circulations. The idealized TCPC was modeled with a silicone mold and blood analog made of water and glycerol that was seeded with 10-μm glass beads. B-mode, color Doppler, and pulsed-wave Doppler images were used to visualize complex flow patterns in the idealized TCPC with (1) no VIP, (2) static VIP, and powered VIP rotation rates of (3) 500 and (4) 2,000 rotations per minute (RPM). Pulsed-wave Doppler data showed higher mean velocities and greater variance in the outlets relative to the larger inlets. The maximum inlet velocity ± SD increased from 10.9 ± 3.53 cm/s with no VIP to 15.9 ± 1.03 when the VIP was rotating at 2,000 RPM. Likewise, the maximum outlet velocity increased from 14.9 ± 11.2 cm/s to 18.9 ± 7.25 cm/s at 2,000 RPM. The faster mean velocities with the VIP rotating suggest that the pump augments cavopulmonary flow. The results of this study suggest that measuring complex flow patterns with ultrasound in vivo could be used clinically to optimize VIP positioning and rotation rate during and after implantation
Nonlinear Impurity Modes in Homogeneous and Periodic Media
We analyze the existence and stability of nonlinear localized waves described
by the Kronig-Penney model with a nonlinear impurity. We study the properties
of such waves in a homogeneous medium, and then analyze new effects introduced
by periodicity of the medium parameters. In particular, we demonstrate the
existence of a novel type of stable nonlinear band-gap localized states, and
also reveal an important physical mechanism of the oscillatory wave
instabilities associated with the band-gap wave resonances.Comment: 11 pages, 3 figures; To be published in: Proceedings of the NATO
Advanced Research Workshop "Nonlinearity and Disorder: Theory and
Applications" (Tashkent, 2-6 Oct, 2000) Editors: P.L. Christiansen and F.K.
Abdullaev (Kluwer, 2001
Experimental demonstration of a hyper-entangled ten-qubit Schr\"odinger cat state
Coherent manipulation of an increasing number of qubits for the generation of
entangled states has been an important goal and benchmark in the emerging field
of quantum information science. The multiparticle entangled states serve as
physical resources for measurement-based quantum computing and high-precision
quantum metrology. However, their experimental preparation has proved extremely
challenging. To date, entangled states up to six, eight atoms, or six photonic
qubits have been demonstrated. Here, by exploiting both the photons'
polarization and momentum degrees of freedom, we report the creation of
hyper-entangled six-, eight-, and ten-qubit Schr\"odinger cat states. We
characterize the cat states by evaluating their fidelities and detecting the
presence of genuine multi-partite entanglement. Small modifications of the
experimental setup will allow the generation of various graph states up to ten
qubits. Our method provides a shortcut to expand the effective Hilbert space,
opening up interesting applications such as quantum-enhanced super-resolving
phase measurement, graph-state generation for anyonic simulation and
topological error correction, and novel tests of nonlocality with
hyper-entanglement.Comment: 11 pages, 5 figures, comments welcom
Optical one-way quantum computing with a simulated valence-bond solid
One-way quantum computation proceeds by sequentially measuring individual
spins (qubits) in an entangled many-spin resource state. It remains a
challenge, however, to efficiently produce such resource states. Is it possible
to reduce the task of generating these states to simply cooling a quantum
many-body system to its ground state? Cluster states, the canonical resource
for one-way quantum computing, do not naturally occur as ground states of
physical systems. This led to a significant effort to identify alternative
resource states that appear as ground states in spin lattices. An appealing
candidate is a valence-bond-solid state described by Affleck, Kennedy, Lieb,
and Tasaki (AKLT). It is the unique, gapped ground state for a two-body
Hamiltonian on a spin-1 chain, and can be used as a resource for one-way
quantum computing. Here, we experimentally generate a photonic AKLT state and
use it to implement single-qubit quantum logic gates.Comment: 11 pages, 4 figures, 8 tables - added one referenc
Quantum nondemolition measurement of mechanical motion quanta
The fields of opto- and electromechanics have facilitated numerous advances
in the areas of precision measurement and sensing, ultimately driving the
studies of mechanical systems into the quantum regime. To date, however, the
quantization of the mechanical motion and the associated quantum jumps between
phonon states remains elusive. For optomechanical systems, the coupling to the
environment was shown to preclude the detection of the mechanical mode
occupation, unless strong single photon optomechanical coupling is achieved.
Here, we propose and analyse an electromechanical setup, which allows to
overcome this limitation and resolve the energy levels of a mechanical
oscillator. We find that the heating of the membrane, caused by the interaction
with the environment and unwanted couplings, can be suppressed for carefully
designed electromechanical systems. The results suggest that phonon number
measurement is within reach for modern electromechanical setups.Comment: 8 pages, 5 figures plus 24 pages, 11 figures supplemental materia
Spontaneous creation of Kibble-Zurek solitons in a Bose-Einstein condensate
When a system crosses a second-order phase transition on a finite timescale,
spontaneous symmetry breaking can cause the development of domains with
independent order parameters, which then grow and approach each other creating
boundary defects. This is known as Kibble-Zurek mechanism. Originally
introduced in cosmology, it applies both to classical and quantum phase
transitions, in a wide variety of physical systems. Here we report on the
spontaneous creation of solitons in Bose-Einstein condensates via the
Kibble-Zurek mechanism. We measure the power-law dependence of defects number
with the quench time, and provide a check of the Kibble-Zurek scaling with the
sonic horizon. These results provide a promising test bed for the determination
of critical exponents in Bose-Einstein condensates.Comment: 7 pages, 4 figure
Propagation of an Earth-directed coronal mass ejection in three dimensions
Solar coronal mass ejections (CMEs) are the most significant drivers of
adverse space weather at Earth, but the physics governing their propagation
through the heliosphere is not well understood. While stereoscopic imaging of
CMEs with the Solar Terrestrial Relations Observatory (STEREO) has provided
some insight into their three-dimensional (3D) propagation, the mechanisms
governing their evolution remain unclear due to difficulties in reconstructing
their true 3D structure. Here we use a new elliptical tie-pointing technique to
reconstruct a full CME front in 3D, enabling us to quantify its deflected
trajectory from high latitudes along the ecliptic, and measure its increasing
angular width and propagation from 2-46 solar radii (approximately 0.2 AU).
Beyond 7 solar radii, we show that its motion is determined by an aerodynamic
drag in the solar wind and, using our reconstruction as input for a 3D
magnetohydrodynamic simulation, we determine an accurate arrival time at the
Lagrangian L1 point near Earth.Comment: 5 figures, 2 supplementary movie
A host transcriptional signature for presymptomatic detection of infection in humans exposed to influenza H1N1 or H3N2.
There is great potential for host-based gene expression analysis to impact the early diagnosis of infectious diseases. In particular, the influenza pandemic of 2009 highlighted the challenges and limitations of traditional pathogen-based testing for suspected upper respiratory viral infection. We inoculated human volunteers with either influenza A (A/Brisbane/59/2007 (H1N1) or A/Wisconsin/67/2005 (H3N2)), and assayed the peripheral blood transcriptome every 8 hours for 7 days. Of 41 inoculated volunteers, 18 (44%) developed symptomatic infection. Using unbiased sparse latent factor regression analysis, we generated a gene signature (or factor) for symptomatic influenza capable of detecting 94% of infected cases. This gene signature is detectable as early as 29 hours post-exposure and achieves maximal accuracy on average 43 hours (p = 0.003, H1N1) and 38 hours (p-value = 0.005, H3N2) before peak clinical symptoms. In order to test the relevance of these findings in naturally acquired disease, a composite influenza A signature built from these challenge studies was applied to Emergency Department patients where it discriminates between swine-origin influenza A/H1N1 (2009) infected and non-infected individuals with 92% accuracy. The host genomic response to Influenza infection is robust and may provide the means for detection before typical clinical symptoms are apparent
- …
