393 research outputs found
Oscillatory wave fronts in chains of coupled nonlinear oscillators
Wave front pinning and propagation in damped chains of coupled oscillators
are studied. There are two important thresholds for an applied constant stress
: for (dynamic Peierls stress), wave fronts fail to propagate,
for stable static and moving wave fronts coexist, and
for (static Peierls stress) there are only stable moving wave
fronts. For piecewise linear models, extending an exact method of Atkinson and
Cabrera's to chains with damped dynamics corroborates this description. For
smooth nonlinearities, an approximate analytical description is found by means
of the active point theory. Generically for small or zero damping, stable wave
front profiles are non-monotone and become wavy (oscillatory) in one of their
tails.Comment: 18 pages, 21 figures, 2 column revtex. To appear in Phys. Rev.
Dynamics of the Hubbard model: a general approach by time dependent variational principle
We describe the quantum dynamics of the Hubbard model at semi-classical
level, by implementing the Time-Dependent Variational Principle (TDVP)
procedure on appropriate macroscopic wavefunctions constructed in terms of
su(2)-coherent states. Within the TDVP procedure, such states turn out to
include a time-dependent quantum phase, part of which can be recognized as
Berry's phase. We derive two new semi-classical model Hamiltonians for
describing the dynamics in the paramagnetic, superconducting, antiferromagnetic
and charge density wave phases and solve the corresponding canonical equations
of motion in various cases. Noticeably, a vortex-like ground state phase
dynamics is found to take place for U>0 away from half filling. Moreover, it
appears that an oscillatory-like ground state dynamics survives at the Fermi
surface at half-filling for any U. The low-energy dynamics is also exactly
solved by separating fast and slow variables. The role of the time-dependent
phase is shown to be particularly interesting in the ordered phases.Comment: ReVTeX file, 38 pages, to appear on Phys. Rev.
NeuroSpeech
NeuroSpeech is a software for modeling pathological speech signals considering different speech dimensions: phonation, articulation, prosody, and intelligibility. Although it was developed to model dysarthric speech signals from Parkinson's patients, its structure allows other computer scientists or developers to include other pathologies and/or measures. Different tasks can be performed: (1) modeling of the signals considering the aforementioned speech dimensions, (2) automatic discrimination of Parkinson's vs. non-Parkinson's, and (3) prediction of the neurological state according to the Unified Parkinson's Disease Rating Scale (UPDRS) score. The prediction of the dysarthria level according to the Frenchay Dysarthria Assessment scale is also provided
Modelling of Thermal Sterilization of high-moisture snack foods: feasibility analysis and optimization
High-moisture snacks, such as steamed buns and rice cakes, are traditional and popular in Asian countries. However, their shelf life is short, primarily due to microbial spoilage. Current manufacturing methods address this shortcoming through the use of chemical preservatives. To satisfy consumers’ demand for preservative-free food, thermal sterilization of a model high-moisture snack (steamed rice cakes) is investigated in this work. Bacillus cereus spores are heat-resistant pathogens typically found in rice products; hence, they constitute a suitable candidate to assess the effectiveness of thermal sterilization. A validated combination of predicted temperature profile of rice cakes based on thermal properties extracted experimentally with thermal inactivation kinetics of B. cereus spores allows us to assess the sensitivity of processing conditions to sterilization efficiency. Using both experimentation and modelling, it is shown that enhancement of heat transfer by improving convection from the heating medium (either water or steam) has a limited effect on inactivation due to the intrinsic kinetics of spore inactivation
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
RICORS2040 : The need for collaborative research in chronic kidney disease
Chronic kidney disease (CKD) is a silent and poorly known killer. The current concept of CKD is relatively young and uptake by the public, physicians and health authorities is not widespread. Physicians still confuse CKD with chronic kidney insufficiency or failure. For the wider public and health authorities, CKD evokes kidney replacement therapy (KRT). In Spain, the prevalence of KRT is 0.13%. Thus health authorities may consider CKD a non-issue: very few persons eventually need KRT and, for those in whom kidneys fail, the problem is 'solved' by dialysis or kidney transplantation. However, KRT is the tip of the iceberg in the burden of CKD. The main burden of CKD is accelerated ageing and premature death. The cut-off points for kidney function and kidney damage indexes that define CKD also mark an increased risk for all-cause premature death. CKD is the most prevalent risk factor for lethal coronavirus disease 2019 (COVID-19) and the factor that most increases the risk of death in COVID-19, after old age. Men and women undergoing KRT still have an annual mortality that is 10- to 100-fold higher than similar-age peers, and life expectancy is shortened by ~40 years for young persons on dialysis and by 15 years for young persons with a functioning kidney graft. CKD is expected to become the fifth greatest global cause of death by 2040 and the second greatest cause of death in Spain before the end of the century, a time when one in four Spaniards will have CKD. However, by 2022, CKD will become the only top-15 global predicted cause of death that is not supported by a dedicated well-funded Centres for Biomedical Research (CIBER) network structure in Spain. Realizing the underestimation of the CKD burden of disease by health authorities, the Decade of the Kidney initiative for 2020-2030 was launched by the American Association of Kidney Patients and the European Kidney Health Alliance. Leading Spanish kidney researchers grouped in the kidney collaborative research network Red de Investigación Renal have now applied for the Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) call for collaborative research in Spain with the support of the Spanish Society of Nephrology, Federación Nacional de Asociaciones para la Lucha Contra las Enfermedades del Riñón and ONT: RICORS2040 aims to prevent the dire predictions for the global 2040 burden of CKD from becoming true
- …
