2,213 research outputs found

    APEX-CHAMP+ high-J CO observations of low-mass young stellar objects: II. Distribution and origin of warm molecular gas

    Get PDF
    The origin and heating mechanisms of warm (50<T<200 K) molecular gas in low-mass young stellar objects (YSOs) are strongly debated. Both passive heating of the inner collapsing envelope by the protostellar luminosity as well as active heating by shocks and by UV associated with the outflows or accretion have been proposed. We aim to characterize the warm gas within protosteller objects, and disentangle contributions from the (inner) envelope, bipolar outflows and the quiescent cloud. High-J CO maps (12CO J=6--5 and 7--6) of the immediate surroundings (up to 10,000 AU) of eight low-mass YSOs are obtained with the CHAMP+ 650/850 GHz array receiver mounted on the APEX telescope. In addition, isotopologue observations of the 13CO J=6--5 transition and [C I] 3P_2-3P_1 line were taken. Strong quiescent narrow-line 12CO 6--5 and 7--6 emission is seen toward all protostars. In the case of HH~46 and Ced 110 IRS 4, the on-source emission originates in material heated by UV photons scattered in the outflow cavity and not just by passive heating in the inner envelope. Warm quiescent gas is also present along the outflows, heated by UV photons from shocks. Shock-heated warm gas is only detected for Class 0 flows and the more massive Class I sources such as HH~46. Outflow temperatures, estimated from the CO 6--5 and 3--2 line wings, are ~100 K, close to model predictions, with the exception of the L~1551 IRS 5 and IRAS 12496-7650, for which temperatures <50 K are found. APEX-CHAMP+ is uniquely suited to directly probe a protostar's feedback on its accreting envelope gas in terms of heating, photodissociation, and outflow dispersal by mapping 1'x1' regions in high-J CO and [C I] lines.Comment: 18 pages, accepted by A&A, A version with the figures in higher quality can be found on my website: http://www.cfa.harvard.edu/~tvankemp

    Ectomycorrhizal influence on the dynamics of sesquiterpene release by Tricholoma vaccinum

    Get PDF
    Tricholoma vaccinum is an ectomycorrhizal basidiomycete with high host specificity. The slow-growing fungus is able to produce twenty sesquiterpenes, including α-barbatene, sativene, isocaryophyllene, α-cuprenene, β-cedrene, ß-copaene, 4-epi-α-acoradiene, and chamigrene in axenic culture. For the three major compounds, Δ(6)-protoilludene, β-barbatene, and an unidentified oxygenated sesquiterpene (m/z 218.18), changed production during co-cultivation with the ectomycorrhizal partner tree, Picea abies, could be shown with distinct dynamics. During the mycorrhizal growth of T. vaccinum–P. abies, Δ(6)-protoilludene and the oxygenated sesquiterpene appeared at similar times, which warranted further studies of potential biosynthesis genes. In silico analyses identified a putative protoilludene synthesis gene, pie1, as being up-regulated in the mycorrhizal stage, in addition to the previously identified, co-regulated geosmin synthase, ges1. We therefore hypothesize that the sesquiterpene synthase pie1 has an important role during mycorrhization, through Δ(6)-protoilludene and/or its accompanied oxygenated sesquiterpene production

    A Review of H2CO 6cm Masers in the Galaxy

    Full text link
    We present a review of the field of formaldehyde (H2CO) 6cm masers in the Galaxy. Previous to our ongoing work, H2CO 6cm masers had been detected in the Galaxy only toward three regions: NGC7538 IRS1, Sgr B2, and G29.96-0.02. Current efforts by our group using the Very Large Array, Arecibo, and the Green Bank Telescope have resulted in the detection of four new H2CO 6cm maser regions. We discuss the characteristics of the known H2CO masers and the association of H2CO 6cm masers with very young regions of massive star formation. We also review the current ideas on the pumping mechanism for H2CO 6cm masers.Comment: 10 pages, 5 figures, IAU Symposium 242: Astrophysical Masers and their Environment

    A New Galactic 6cm Formaldehyde Maser

    Get PDF
    We report the detection of a new H2CO maser in the massive star forming region G23.71-0.20 (IRAS 18324-0820), i.e., the fifth region in the Galaxy where H2CO maser emission has been found. The new H2CO maser is located toward a compact HII region, and is coincident in velocity and position with 6.7 GHz methanol masers and with an IR source as revealed by Spitzer/IRAC GLIMPSE data. The coincidence with an IR source and 6.7 GHz methanol masers suggests that the maser is in close proximity to an embedded massive protostar. Thus, the detection of H2CO maser emission toward G23.71-0.20 supports the trend that H2CO 6cm masers trace molecular material very near young massive stellar objects.Comment: Accepted for publication in The Astrophysical Journal Letter

    An H2CO 6cm Maser Pinpointing a Possible Circumstellar Torus in IRAS18566+0408

    Get PDF
    We report observations of 6cm, 3.6cm, 1.3cm, and 7mm radio continuum, conducted with the Very Large Array towards IRAS18566+0408, one of the few sources known to harbor H2CO 6cm maser emission. Our observations reveal that the emission is dominated by an ionized jet at cm wavelengths. Spitzer/IRAC images from GLIMPSE support this interpretation, given the presence of 4.5um excess emission at approximately the same orientation as the cm continuum. The 7mm emission is dominated by thermal dust from a flattened structure almost perpendicular to the ionized jet, thus, the 7mm emission appears to trace a torus associated with a young massive stellar object. The H2CO 6cm maser is coincident with the center of the torus-like structure. Our observations rule out radiative pumping via radio continuum as the excitation mechanism for the H2CO 6cm maser in IRAS18566+0408.Comment: 20 pages, 4 figures, ApJ (in press

    Function of sesquiterpenes from Schizophyllum commune in interspecific interactions

    Get PDF

    Chromane derivatives from underground parts of Iris tenuifolia and their in vitro antimicrobial, cytotoxicity and antiproliferative evaluation

    Get PDF
    Phytochemical investigation of the ethanol extract of underground parts of Iris tenuifolia Pall. afforded five new compounds; an unusual macrolide termed moniristenulide (1), 5-methoxy-6,7-methylenedioxy-4-O-2′-cycloflavan (2), 5,7,2′,3′-tetrahydroxyflavanone (3), 5-hydroxy-6,7-dimethoxyisoflavone-2′-O-β-d-glucopyranoside (9), 5,2′,3′-dihydroxy-6,7-dimethoxyisoflavone (10), along with seven known compounds (4–8, 11–12). The structures of all purified compounds were established by analysis of 1D and 2D NMR spectroscopy and HR-ESI-MS. The antimicrobial activity of the compounds 1–3, 5, 9, and 10 was investigated using the agar diffusion method against fungi, Gram-positive and Gram-negative bacteria. In consequence, new compound 3 was found to possess the highest antibacterial activity against Enterococcus faecalis VRE and Mycobacterium vaccae. Cell proliferation and cytotoxicity tests were also applied on all isolated compounds and plant crude extract in vitro with the result of potent inhibitory effect against leukemia cells. In particular, the newly discovered isoflavone 10 was active against both of the leukemia cells K-562 and THP-1 while 4–6 of the flavanone type compounds were active against only THP-1
    • …
    corecore