4,829 research outputs found

    An interactive graphics package for the automatic node renumbering of finite element matrices

    Get PDF
    An interactive graphics software package which allows users to display the non-zero structure of large sparse symmetric materials was described and methods used to implement it as a portable FORTRAN callable subroutine were summarized. In particular, the system permits the display of the resulting matrix after reordering the rows and columns, with the reordering scheme either defined by the user or automatically generated by the program with the aim of reducing matrix bandwidth and profile. Although the primary application of the package has been to the finite element analysis of structures, it is equally well suited to the many other areas of engineering and science which use sparse matrices

    Collective modes of CP(3) Skyrmion crystals in quantum Hall ferromagnets

    Full text link
    The two-dimensional electron gas in a bilayer quantum Hall system can sustain an interlayer coherence at filling factor nu=1 even in the absence of tunneling between the layers. This system has low-energy charged excitations which may carry textures in real spin or pseudospin. Away from filling factor nu =1 a finite density of these is present in the ground state of the 2DEG and forms a crystal. Depending on the relative size of the various energy scales, such as tunneling (Delta_SAS), Zeeman coupling (Delta_Z) or electrical bias (Delta_b), these textured crystal states can involve spin, pseudospin, or both intertwined. In this article, we present a comprehensive numerical study of the collective excitations of these textured crystals using the GRPA. For the pure spin case, at finite Zeeman coupling the state is a Skyrmion crystal with a gapless phonon mode, and a separate Goldstone mode that arises from a broken U(1) symmetry. At zero Zeeman coupling, we demonstrate that the constituent Skyrmions break up, and the resulting state is a meron crystal with 4 gapless modes. In contrast, a pure pseudospin Skyrme crystal at finite tunneling has only the phonon mode. For Delta_SAS=0, the state evolves into a meron crystal and supports an extra gapless U(1) mode in addition to the phonon. For a CP(3) Skyrmion crystal, we find a U(1) gapless mode in the presence of the symmetry-breaking fields. In addition, a second mode with a very small gap is present in the spectrum.Comment: 16 pages and 12 eps figure

    Stable and Metastable Structures of Cobalt on Cu(001): An ab initio Study

    Full text link
    We report results of density-functional theory calculations on the structural, magnetic, and electronic properties of (1x1)-structures of Co on Cu(001) for coverages up to two monolayers. In particular we discuss the tendency towards phase separation in Co islands and the possibility of segregation of Cu on top of the Co-film. A sandwich structure consisting of a bilayer Co-film covered by 1ML of Cu is found to be the lowest-energy configuration. We also discuss a bilayer c(2x2)-alloy which may form due to kinetic reasons, or be stabilized at strained surface regions. Furthermore, we study the influence of magnetism on the various structures and, e.g., find that Co adlayers induce a weak spin-density wave in the copper substrate.Comment: 11 pages including 4 figures. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Quantum key distribution and 1 Gbit/s data encryption over a single fibre

    Full text link
    We perform quantum key distribution (QKD) in the presence of 4 classical channels in a C-band dense wavelength division multiplexing (DWDM) configuration using a commercial QKD system. The classical channels are used for key distillation and 1 Gbps encrypted communication, rendering the entire system independent from any other communication channel than a single dedicated fibre. We successfully distil secret keys over fibre spans of up to 50 km. The separation between quantum channel and nearest classical channel is only 200 GHz, while the classical channels are all separated by 100 GHz. In addition to that we discuss possible improvements and alternative configurations, for instance whether it is advantageous to choose the quantum channel at 1310 nm or to opt for a pure C-band configuration.Comment: 9 pages, 7 figure

    Epitaxial growth of Cu on Cu(001): experiments and simulations

    Full text link
    A quantitative comparison between experimental and Monte Carlo simulation results for the epitaxial growth of Cu/Cu(001) in the submonolayer regime is presented. The simulations take into account a complete set of hopping processes whose activation energies are derived from semi-empirical calculations using the embedded-atom method. The island separation is measured as a function of the incoming flux and the temperature. A good quantitative agreement between the experiment and simulation is found for the island separation, the activation energies for the dominant processes, and the exponents that characterize the growth. The simulation results are then analyzed at lower coverages, which are not accessible experimentally, providing good agreement with theoretical predictions as well.Comment: Latex document. 7 pages. 3 embedded figures in separate PS files. One bbl fil

    Ab initio study of step formation and self-diffusion on Ag(100)

    Full text link
    Using the plane wave pseudopotential method we performed density functional theory calculations on the stability of steps and self-diffusion processes on Ag(100). Our calculated step formation energies show that the {111}-faceted step is more stable than the {110}-faceted step. In accordance with experimental observations we find that the equilibrium island shape should be octagonal very close to a square with predominately {111}-faceted steps. For the (100) surface of fcc metals atomic migration proceeds by a hopping or an exchange process. For Ag(100) we find that adatoms diffuse across flat surfaces preferentially by hopping. Adatoms approaching the close-packed {111}-faceted step edges descend from the upper terrace to the lower level by an atomic exchange with an energy barrier almost identical to the diffusion barrier on flat surface regions. Thus, within our numerical accuracy (approx +- 0.05 eV) there is no additional step-edge barrier to descent. This provides a natural explanation for the experimental observations of the smooth two-dimensional growth in homoepitaxy of Ag(100). Inspection of experimental results of other fcc crystal surfaces indicates that our result holds quite generally.Comment: 10 pages, 9 figures. Submitted to Phys. Rev B (October 31, 1996

    ERK2 phosphorylation of serine 77 regulates Bmf pro-apoptotic activity

    Get PDF
    B-cell lymphoma 2 (Bcl-2) homology 3 (BH3)-only proteins represent a class of pro-apoptotic factors that neutralize pro-survival Bcl-2 proteins, and, in some cases, directly activate Bax. The mechanisms of control and the role of BH3-only proteins, such as Bcl-2 like protein 11 extra large and Bad are well studied. By contrast, relatively little is known about the regulation and role of Bcl-2 modifying factor (Bmf). The B-RAF oncogene is mutated in ∼8% of human tumors. We have previously shown that Bmf is upregulated at the transcript level and is required for apoptosis induced by targeting B-RAF signaling in tumor cells harboring mutant B-RAF. In this study, we show that Bmf is regulated at the post-translational level by mutant B-RAF-MEK-ERK2 signaling. Extracellular signal-regulated kinase (ERK2) directly phosphorylates Bmf on serine 74 and serine 77 residues with serine 77 being the predominant site. In addition, serine 77 phosphorylation reduces Bmf pro-apoptotic activity likely through a mechanism independent of altering Bmf localization to the mitochondria and/or interactions with dynein light chain 2 and the pro-survival proteins, B-cell lymphoma extra large, Bcl-2 and Mcl-1. These data identify a novel mode of regulation in Bmf that modulates its pro-apoptotic activity in mutant B-RAF tumor cells

    User-centred design of flexible hypermedia for a mobile guide: Reflections on the hyperaudio experience

    Get PDF
    A user-centred design approach involves end-users from the very beginning. Considering users at the early stages compels designers to think in terms of utility and usability and helps develop the system on what is actually needed. This paper discusses the case of HyperAudio, a context-sensitive adaptive and mobile guide to museums developed in the late 90s. User requirements were collected via a survey to understand visitors’ profiles and visit styles in Natural Science museums. The knowledge acquired supported the specification of system requirements, helping defining user model, data structure and adaptive behaviour of the system. User requirements guided the design decisions on what could be implemented by using simple adaptable triggers and what instead needed more sophisticated adaptive techniques, a fundamental choice when all the computation must be done on a PDA. Graphical and interactive environments for developing and testing complex adaptive systems are discussed as a further step towards an iterative design that considers the user interaction a central point. The paper discusses how such an environment allows designers and developers to experiment with different system’s behaviours and to widely test it under realistic conditions by simulation of the actual context evolving over time. The understanding gained in HyperAudio is then considered in the perspective of the developments that followed that first experience: our findings seem still valid despite the passed time

    Climate change jointly with migration ability affect future range shifts of dominant fir species in Southwest China

    Get PDF
    Aim As a prominent geographical distribution centre for the dark coniferous forests, mountains of Southwest China (MSWC) is experiencing an unprecedented warming trend, posing severe challenges to the survival of dominant fir (Abies) species. Although plant's migration ability is a prerequisite for its survival in changing environments, it has often been ignored in species distribution models (SDMs). This study aimed to quantify the magnitude and direction of range changes by the year 2080 for six dominant fir species, that is Abies recurvata, Abies faxoniana, Abies squamata, Abies ernestii, Abies forrestii and Abies georgei, with an emphasis on exploring the relationship between migration ability and projected distributions. Location The mountains of Southwest China. Methods We applied the Maximum Entropy (Maxent) algorithm to calibrate ecological niche models and to project the climatically suitable areas (CSAs) of each species under two emission scenarios (RCP 4.5 and RCP 8.5). Additionally, we delimited future species ranges by three migration scenarios (full-, no- and partial-migration scenarios). Results The simulations showed the distinctive responses of the six fir species to anthropogenic climate change (ACC). By 2080, the distribution areas of Abies recurvata were projected to decline only in the no-migration scenario but increase under the full- and partial-migration scenarios, while the other five species were projected to decline in the majority of emission x migration scenarios. Fir species in the southern region were predicted to be more vulnerable to ACC due to the larger losses in CSAs and a stronger effect of the partial-migration scenario on the newly colonized areas of this group. The studied species showed a simulated migration trend (northward and westward) to the interior Qinghai-Tibet Plateau under ACC. Main conclusions Benefits or losses for species under ACC depended on the geographical location, their ecological niches and migration abilities, which provide essential insights for a spatial conservation assessment of biodiversity hotspots in the future.Peer reviewe
    corecore