1,818 research outputs found

    First global analysis of SEASAT scatterometer winds and potential for meteorological research

    Get PDF
    The first global wind fields from SEASAT-A scatterometer (SASS) data were produced. Fifteen days of record are available on tape, with unique wind directions indicated for each observation. The methodology of the production of this data set is described, as well as the testing of its validity. A number of displays of the data, on large and small scales, analyzed and gridded, are provided

    A Note on Frame Dragging

    Get PDF
    The measurement of spin effects in general relativity has recently taken centre stage with the successfully launched Gravity Probe B experiment coming toward an end, coupled with recently reported measurements using laser ranging. Many accounts of these experiments have been in terms of frame-dragging. We point out that this terminology has given rise to much confusion and that a better description is in terms of spin-orbit and spin-spin effects. In particular, we point out that the de Sitter precession (which has been mesured to a high accuracy) is also a frame-dragging effect and provides an accurate benchmark measurement of spin-orbit effects which GPB needs to emulate

    Anatomy of the binary black hole recoil: A multipolar analysis

    Get PDF
    We present a multipolar analysis of the gravitational recoil computed in recent numerical simulations of binary black hole (BH) coalescence, for both unequal masses and non-zero, non-precessing spins. We show that multipole moments up to and including l=4 are sufficient to accurately reproduce the final recoil velocity (within ~2%) and that only a few dominant modes contribute significantly to it (within ~5%). We describe how the relative amplitudes, and more importantly, the relative phases, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ringdown phases. We also find that the numerical results can be reproduced by an ``effective Newtonian'' formula for the multipole moments obtained by replacing the radial separation in the Newtonian formulae with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasi-normal modes (QNMs). Analytic formulae, obtained by expressing the multipole moments in terms of the fundamental QNMs of a Kerr BH, are able to explain the onset and amount of ``anti-kick'' for each of the simulations. Lastly, we apply this multipolar analysis to help explain the remarkable difference between the amplitudes of planar and non-planar kicks for equal-mass spinning black holes.Comment: 28 pages, 20 figures, submitted to PRD; v2: minor revisions from referee repor

    Impact of Technology on Meat Safety

    Get PDF
    Innovations and new technologies tend to create apprehension among consumers who are not familiar with the technologies and their mode of action. This case currently exists regarding the use of hormones, antibiotics and other feed additives in livestock production. The purpose of this fact sheet is to familiarize consumers with some of the products of technology that are currently utilized in the production of meat animals and to provide an evaluation of how these products impact the safety of meat and meat products

    Modeling kicks from the merger of generic black-hole binaries

    Get PDF
    Recent numerical relativistic results demonstrate that the merger of comparable-mass spinning black holes has a maximum ``recoil kick'' of up to \sim 4000 \kms. However the scaling of these recoil velocities with mass ratio is poorly understood. We present new runs showing that the maximum possible kick perpendicular to the orbital plane does not scale as η2\sim\eta^2 (where η\eta is the symmetric mass ratio), as previously proposed, but is more consistent with η3\sim\eta^3, at least for systems with low orbital precession. We discuss the effect of this dependence on galactic ejection scenarios and retention of intermediate-mass black holes in globular clusters.Comment: 5 pages, 1 figure, 3 tables. Version published in Astrophys. J. Let

    The Giant Flare of December 27, 2004 from SGR 1806-20

    Get PDF
    The giant flare of December 27, 2004 from SGR 1806-20 represents one of the most extraordinary events captured in over three decades of monitoring the gamma-ray sky. One measure of the intensity of the main peak is its effect on X- and gamma-ray instruments. RHESSI, an instrument designed to study the brightest solar flares, was completely saturated for ~0.5 s following the start of the main peak. A fortuitous alignment of SGR 1806-20 near the Sun at the time of the giant flare, however, allowed RHESSI a unique view of the giant flare event, including the precursor, the main peak decay, and the pulsed tail. Since RHESSI was saturated during the main peak, we augment these observations with Wind and RHESSI particle detector data in order to reconstruct the main peak as well. Here we present detailed spectral analysis and evolution of the giant flare. We report the novel detection of a relatively soft fast peak just milliseconds before the main peak, whose timescale and sizescale indicate a magnetospheric origin. We present the novel detection of emission extending up to 17 MeV immediately following the main peak, perhaps revealing a highly-extended corona driven by the hyper-Eddington luminosities. The spectral evolution and pulse evolution during the tail are presented, demonstrating significant magnetospheric twist and evolution during this phase. Blackbody radii are derived for every stage of the flare, which show remarkable agreement despite the range of luminosities and temperatures covered. Finally, we place significant upper limits on afterglow emission in the hundreds of seconds following the giant flare.Comment: 32 pages, 14 figures, submitted to Ap

    PAA9 A 4-YEAR ASSESSMENT OF SEVERE AND NON-SEVERE ASTHMA IN A REAL-WORLD SETTING

    Get PDF

    PAA11 A 4-YEAR ASSESSMENT OF SUB-ACUTE LACK OF ASTHMA CONTROL IN A REAL-WORLD SETTING

    Get PDF

    A General Formula for Black Hole Gravitational Wave Kicks

    Get PDF
    Although the gravitational wave kick velocity in the orbital plane of coalescing black holes has been understood for some time, apparently conflicting formulae have been proposed for the dominant out-of-plane kick, each a good fit to different data sets. This is important to resolve because it is only the out-of-plane kicks that can reach more than 500 km/s and can thus eject merged remnants from galaxies. Using a different ansatz for the out-of-plane kick, we show that we can fit almost all existing data to better than 5 %. This is good enough for any astrophysical calculation, and shows that the previous apparent conflict was only because the two data sets explored different aspects of the kick parameter space.Comment: 14 pages
    corecore