863 research outputs found

    Human Capital, Demographics, and Growth across the US States 1920-1990

    Get PDF
    This paper finds robust evidence that age structure matters for subsequent growth in per capita income across the US states 1920-1990. The age groups 25-65 year are positively related to subsequent per capita income growth. Another conclusion is that the average years of schooling affects subsequent per capita income growth positively when age structure is controlled for. Moreover, the estimated speed of convergence (see e.g. Barro and Sala-i-Martin, 1992) increases substantially when schooling and age structure are held constant in the income growth regressions.Demographics; Human capital; Regions; Growth; Convergence

    General contact mechanics theory for randomly rough surfaces with application to rubber friction

    Full text link
    We generalize the Persson contact mechanics and rubber friction theory to the case where both surfaces have surface roughness. The solids can be rigid, elastic or viscoelastic, and can be homogeneous or layered. We calculate the contact area, the viscoelastic contribution to the friction force, and the average interfacial separation as a function of the sliding speed and the nominal contact pressure. We illustrate the theory with numerical results for a rubber block sliding on a road surface. We find that with increasing sliding speed, the influence of the roughness on the rubber block decreases, and for typical sliding speeds involved in tire dynamics it can be neglected

    On the validity of the method of reduction of dimensionality: area of contact, average interfacial separation and contact stiffness

    Full text link
    It has recently been suggested that many contact mechanics problems between solids can be accurately studied by mapping the problem on an effective one dimensional (1D) elastic foundation model. Using this 1D mapping we calculate the contact area and the average interfacial separation between elastic solids with nominally flat but randomly rough surfaces. We show, by comparison to exact numerical results, that the 1D mapping method fails even qualitatively. We also calculate the normal interfacial stiffness KK and compare it with the result of an analytical study. We attribute the failure of the elastic foundation model to the neglect of the long-range elastic coupling between the asperity contact regions.Comment: 5 pages, 4 figures, 29 reference

    Role of surface roughness in superlubricity

    Full text link
    We study the sliding of elastic solids in adhesive contact with flat and rough interfaces. We consider the dependence of the sliding friction on the elastic modulus of the solids. For elastically hard solids with planar surfaces with incommensurate surface structures we observe extremely low friction (superlubricity), which very abruptly increases as the elastic modulus decreases. We show that even a relatively small surface roughness may completely kill the superlubricity state.Comment: 11 pages, 17 figures, format revte

    Lithium atom storage in nanoporous cellulose via surface induced Li2\rm Li_2 breakage

    Full text link
    We demonstrate a physical mechanism that enhances a splitting of diatomic Li2\rm Li_2 at cellulose surfaces. The origin of this splitting is a possible surface induced diatomic excited state resonance repulsion. The atomic Li is then free to form either physical or chemical bonds with the cellulose surface and even diffuse into the cellulose layer structure. This allows for an enhanced storage capacity of atomic Li in nanoporous celluloseComment: 5 pages, 6 figure

    Non-Perturbative Theory for Dispersion Self-Energy of Atoms

    Full text link
    We go beyond the approximate series-expansions used in the dispersion theory of finite size atoms. We demonstrate that a correct, and non-perturbative, theory dramatically alters the dispersion selfenergies of atoms. The non-perturbed theory gives as much as 100% corrections compared to the traditional series expanded theory for the smaller noble gas atoms.Comment: 3 pages, no figures, 1 tabl

    Resonance Interaction Induced by Metal Surfaces Catalyses Atom Pair Breakage

    Full text link
    We present the theory for retarded resonance interaction between two identical atoms at arbitrary positions near a metal surface. The dipole-dipole resonance interaction force that binds isotropically excited atom pairs together in free space may turn repulsive close to an ideal (totally reflecting) metal surface. On the other hand, close to an infinitely permeable surface it may turn more attractive. We illustrate numerically how the dipole-dipole resonance interaction between two oxygen atoms near a metal surface may provide a repulsive energy of the same order of magnitude as the ground-state binding energy of an oxygen molecule. As a complement we also present results from density-functional theory.Comment: 5 pages, 5 figure
    • …
    corecore