289 research outputs found

    Translational research into gut microbiota: new horizons on obesity treatment: updated 2014

    Get PDF
    Obesity is currently a pandemic of worldwide proportions affecting millions of people. Recent studies have proposed the hypothesis that mechanisms not directly related to the human genome could be involved in the genesis of obesity, due to the fact that, when a population undergoes the same nutritional stress, not all individuals present weight gain related to the diet or become hyperglycemic. The human intestine is colonized by millions of bacteria which form the intestinal flora, known as gut flora. Studies show that lean and overweight human may present a difference in the composition of their intestinal flora; these studies suggest that the intestinal flora could be involved in the development of obesity. Several mechanisms explain the correlation between intestinal flora and obesity. The intestinal flora would increase the energetic extraction of non-digestible polysaccharides. In addition, the lipopolysaccharide from intestinal flora bacteria could trigger a chronic sub-clinical inflammatory process, leading to obesity and diabetes. Another mechanism through which the intestinal flora could lead to obesity would be through the regulation of genes of the host involved in energy storage and expenditure. In the past five years data coming from different sources established causal effects between intestinal microbiota and obesity/insulin resistance, and it is clear that this area will open new avenues of therapeutic to obesity, insulin resistance and DM2

    Evaluation of the combined use of adiponectin and C-reactive protein levels as biomarkers for predicting the deterioration in glycaemia after a median of 5.4 years

    Get PDF
    Aims/hypothesis: Hypoadiponectinaemia and raised C-reactive protein (CRP) level are obesity-related biomarkers associated with glucose dysregulation. We evaluated the combined use of these two biomarkers in predicting the deterioration of glycaemia in a prospective study after a median of 5.4 years. Methods: In total 1,288 non-diabetic participants from the Hong Kong Cardiovascular Risk Factor Prevalence Study-2, with high-sensitivity CRP (hsCRP) and total adiponectin levels measured were included. OGTT was performed in all participants. Two hundred and six participants had deterioration of glycaemia at follow-up, whereas 1,082 participants did not. Results: Baseline age, hsCRP and adiponectin levels were significant independent predictors of the deterioration of glycaemia in a Cox regression analysis after adjusting for baseline age, sex, BMI, hypertension, triacylglycerols, 2 h post-OGTT glucose and homeostasis model assessment of insulin resistance index (all p < 0.01). The introduction of hsCRP or adiponectin level to a regression model including the other biomarker improved the prediction of glycaemic progression significantly in all participants, especially in women (all p < 0.01). The combined inclusion of the two biomarkers resulted in a modest improvement in model discrimination, compared with the inclusion of either one alone. Among participants with impaired fasting glucose/impaired glucose tolerance (IFG/IGT) at baseline, hsCRP and adiponectin levels were not predictive of progression or improvement of glycaemic status. Conclusions/interpretation: Adiponectin and hsCRP levels are independent factors in predicting the deterioration of glycaemia, supporting the role of adiposity-related inflammation in the development of type 2 diabetes. Their combined use as predictive biomarkers is especially useful in women, but not in participants with IFG/IGT. © 2011 The Author(s).published_or_final_versionSpringer Open Choice, 21 Feb 201

    Evaluation of the Widal tube agglutination test for the diagnosis of typhoid fever among children admitted to a rural hdospital in Tanzania and a comparison with previous studies

    Get PDF
    BACKGROUND: The diagnosis of typhoid fever is confirmed by culture of Salmonella enterica serotype Typhi (S. typhi). However, a more rapid, simpler, and cheaper diagnostic method would be very useful especially in developing countries. The Widal test is widely used in Africa but little information exists about its reliability. METHODS: We assessed the performance of the Widal tube agglutination test among febrile hospitalized Tanzanian children. We calculated the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of various anti-TH and -TO titers using culture-confirmed typhoid fever cases as the "true positives" and all other febrile children with blood culture negative for S. typhi as the "true negatives." RESULTS: We found that 16 (1%) of 1,680 children had culture-proven typhoid fever. A single anti-TH titer of 1:80 and higher was the optimal indicator of typhoid fever. This had a sensitivity of 75%, specificity of 98%, NPV of 100%, but PPV was only 26%. We compared our main findings with those from previous studies. CONCLUSION: Among febrile hospitalized Tanzanian children with a low prevalence of typhoid fever, a Widal titer of > or = 1:80 performed well in terms of sensitivity, specificity, and NPV. However a test with improved PPV that is similarly easy to apply and cost-efficient is desirable

    Effects and Action Mechanisms of Berberine and Rhizoma coptidis on Gut Microbes and Obesity in High-Fat Diet-Fed C57BL/6J Mice

    Get PDF
    Gut microbes play important roles in regulating fat storage and metabolism. Rhizoma coptidis (RC) and its main active compound, berberine, have either antimicrobial or anti-obesity activities. In the present study, we hypothesize that RC exerts anti-obesity effects that are likely mediated by mechanisms of regulating gut microbes and berberine may be a key compound of RC. Gut microbes and glucose and lipid metabolism in high-fat diet-fed C57BL/6J (HFD) mice in vivo are investigated after RC and berberine treatments. The results show that RC (200 mg/kg) and berberine (200 mg/kg) significantly lower both body and visceral adipose weights, and reduce blood glucose and lipid levels, and decrease degradation of dietary polysaccharides in HFD mice. Both RC and berberine significantly reduce the proportions of fecal Firmicutes and Bacteroidetes to total bacteria in HFD mice. In the trial ex vivo, both RC and berberine significantly inhibit the growth of gut bacteria under aerobic and anaerobic conditions. In in vitro trials, both RC and berberine significantly inhibit the growth of Lactobacillus (a classical type of Firmicutes) under anaerobic conditions. Furthermore, both RC and berberine significantly increase fasting-induced adipose factor (Fiaf, a key protein negatively regulated by intestinal microbes) expressions in either intestinal or visceral adipose tissues. Both RC and berberine significantly increase mRNA expressions of AMPK, PGC1α, UCP2, CPT1α, and Hadhb related to mitochondrial energy metabolism, which may be driven by increased Fiaf expression. These results firstly suggest that antimicrobial activities of RC and berberine may result in decreasing degradation of dietary polysaccharides, lowering potential calorie intake, and then systemically activating Fiaf protein and related gene expressions of mitochondrial energy metabolism in visceral adipose tissues. Taken together, these action mechanisms may contribute to significant anti-obesity effects. Findings in the present study also indicate that pharmacological regulation on gut microbes can develop an anti-obesity strategy

    Human Endometrial CD98 Is Essential for Blastocyst Adhesion

    Get PDF
    BACKGROUND: Understanding the molecular basis of embryonic implantation is of great clinical and biological relevance. Little is currently known about the adhesion receptors that determine endometrial receptivity for embryonic implantation in humans. METHODS AND PRINCIPAL FINDINGS: Using two human endometrial cell lines characterized by low and high receptivity, we identified the membrane receptor CD98 as a novel molecule selectively and significantly associated with the receptive phenotype. In human endometrial samples, CD98 was the only molecule studied whose expression was restricted to the implantation window in human endometrial tissue. CD98 expression was restricted to the apical surface and included in tetraspanin-enriched microdomains of primary endometrial epithelial cells, as demonstrated by the biochemical association between CD98 and tetraspanin CD9. CD98 expression was induced in vitro by treatment of primary endometrial epithelial cells with human chorionic gonadotropin, 17-β-estradiol, LIF or EGF. Endometrial overexpression of CD98 or tetraspanin CD9 greatly enhanced mouse blastocyst adhesion, while their siRNA-mediated depletion reduced the blastocyst adhesion rate. CONCLUSIONS: These results indicate that CD98, a component of tetraspanin-enriched microdomains, appears to be an important determinant of human endometrial receptivity during the implantation window

    Flotillins Interact with PSGL-1 in Neutrophils and, upon Stimulation, Rapidly Organize into Membrane Domains Subsequently Accumulating in the Uropod

    Get PDF
    BACKGROUND: Neutrophils polarize and migrate in response to chemokines. Different types of membrane microdomains (rafts) have been postulated to be present in rear and front of polarized leukocytes and disruption of rafts by cholesterol sequestration prevents leukocyte polarization. Reggie/flotillin-1 and -2 are two highly homologous proteins that are ubiquitously enriched in detergent resistant membranes and are thought to shape membrane microdomains by forming homo- and hetero-oligomers. It was the goal of this study to investigate dynamic membrane microdomain reorganization during neutrophil activation. METHODOLOGY/PRINCIPAL FINDINGS: We show now, using immunofluorescence staining and co-immunoprecipitation, that endogenous flotillin-1 and -2 colocalize and associate in resting spherical and polarized primary neutrophils. Flotillins redistribute very early after chemoattractant stimulation, and form distinct caps in more than 90% of the neutrophils. At later time points flotillins accumulate in the uropod of polarized cells. Chemotactic peptide-induced redistribution and capping of flotillins requires integrity and dynamics of the actin cytoskeleton, but does not involve Rho-kinase dependent signaling related to formation of the uropod. Both flotillin isoforms are involved in the formation of this membrane domain, as uropod location of exogenously expressed flotillins is dramatically enhanced by co-overexpression of tagged flotillin-1 and -2 in differentiated HL-60 cells as compared to cells expressing only one tagged isoform. Flotillin-1 and -2 associate with P-selectin glycoprotein ligand 1 (PSGL-1) in resting and in stimulated neutrophils as shown by colocalization and co-immunoprecipitation. Neutrophils isolated from PSGL-1-deficient mice exhibit flotillin caps to the same extent as cells isolated from wild type animals, implying that PSGL-1 is not required for the formation of the flotillin caps. Finally we show that stimulus-dependent redistribution of other uropod-located proteins, CD43 and ezrin/radixin/moesin, occurs much slower than that of flotillins and PSGL-1. CONCLUSIONS/SIGNIFICANCE: These results suggest that flotillin-rich actin-dependent membrane microdomains are importantly involved in neutrophil uropod formation and/or stabilization and organize uropod localization of PSGL-1
    corecore