85 research outputs found
Diagnostic accuracy of existing methods for identifying diabetic foot ulcers from inpatient and outpatient datasets
<p>Abstract</p> <p>Background</p> <p>As the number of persons with diabetes is projected to double in the next 25 years in the US, an accurate method of identifying diabetic foot ulcers in population-based data sources are ever more important for disease surveillance and public health purposes. The objectives of this study are to evaluate the accuracy of existing methods and to propose a new method.</p> <p>Methods</p> <p>Four existing methods were used to identify all patients diagnosed with a foot ulcer in a Department of Veterans Affairs (VA) hospital from the inpatient and outpatient datasets for 2003. Their electronic medical records were reviewed to verify whether the medical records positively indicate presence of a diabetic foot ulcer in diagnoses, medical assessments, or consults. For each method, five measures of accuracy and agreement were evaluated using data from medical records as the gold standard.</p> <p>Results</p> <p>Our medical record reviews show that all methods had sensitivity > 92% but their specificity varied substantially between 74% and 91%. A method used in Harrington et al. (2004) was the most accurate with 94% sensitivity and 91% specificity and produced an annual prevalence of 3.3% among VA users with diabetes nationwide. A new and simpler method consisting of two codes (707.1Γ and 707.9) shows an equally good accuracy with 93% sensitivity and 91% specificity and 3.1% prevalence.</p> <p>Conclusions</p> <p>Our results indicate that the Harrington and New methods are highly comparable and accurate. We recommend the Harrington method for its accuracy and the New method for its simplicity and comparable accuracy.</p
Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice.
To gain insight into how mutant huntingtin (mHtt) CAG repeat length modifies Huntington's disease (HD) pathogenesis, we profiled mRNA in over 600 brain and peripheral tissue samples from HD knock-in mice with increasing CAG repeat lengths. We found repeat length-dependent transcriptional signatures to be prominent in the striatum, less so in cortex, and minimal in the liver. Coexpression network analyses revealed 13 striatal and 5 cortical modules that correlated highly with CAG length and age, and that were preserved in HD models and sometimes in patients. Top striatal modules implicated mHtt CAG length and age in graded impairment in the expression of identity genes for striatal medium spiny neurons and in dysregulation of cyclic AMP signaling, cell death and protocadherin genes. We used proteomics to confirm 790 genes and 5 striatal modules with CAG length-dependent dysregulation at the protein level, and validated 22 striatal module genes as modifiers of mHtt toxicities in vivo
Genotype at the P554L Variant of the Hexose-6 Phosphate Dehydrogenase Gene Is Associated with Carotid Intima-Medial Thickness
Objective: The combined thickness of the intima and media of the carotid artery (carotid intima-medial thickness, CIMT) is associated with cardiovascular disease and stroke. Previous studies indicate that carotid intima-medial thickness is a significantly heritable phenotype, but the responsible genes are largely unknown. Hexose-6 phosphate dehydrogenase (H6PDH) is a microsomal enzyme whose activity regulates corticosteroid metabolism in the liver and adipose tissue; variability in measures of corticosteroid metabolism within the normal range have been associated with risk factors for cardiovascular disease. We performed a genetic association study in 854 members of 224 families to assess the relationship between polymorphisms in the gene coding for hexose-6 phosphate dehydrogenase (H6PD) and carotid intima-medial thickness. Methods: Families were ascertained via a hypertensive proband. CIMT was measured using B-mode ultrasound. Single nucleotide polymorphisms (SNPs) tagging common variation in the H6PD gene were genotyped. Association was assessed following adjustment for significant covariates including "classical" cardiovascular risk factors. Functional studies to determine the effect of particular SNPs on H6PDH were performed. Results: There was evidence of association between the single nucleotide polymorphism rs17368528 in exon five of the H6PD gene, which encodes an amino-acid change from proline to leucine in the H6PDH protein, and mean carotid intima-medial thickness (p = 0.00065). Genotype was associated with a 5% (or 0.04 mm) higher mean carotid intima-medial thickness measurement per allele, and determined 2% of the population variability in the phenotype. Conclusions: Our results suggest a novel role for the H6PD gene in atherosclerosis susceptibility
Suppression of the Nrf2-Dependent Antioxidant Response by Glucocorticoids and 11Ξ²-HSD1-Mediated Glucocorticoid Activation in Hepatic Cells
Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key transcription factor regulating a plethora of detoxifying enzymes and antioxidant genes involved in drug metabolism and defence against oxidative stress. The glucocorticoid receptor (GR) is a ligand-induced transcription factor involved in the regulation of energy supply for metabolic needs to cope with various stressors. GR activity is controlled by glucocorticoids, which are synthesized in the adrenal glands and regenerated mainly in the liver from inactive cortisone by 11Ξ²-hydroxysteroid dehydrogenase-1 (11Ξ²-HSD1).; Using transfected HEK-293 cells and hepatic H4IIE cells we show that glucocorticoids, activated by 11Ξ²-HSD1 and acting through GR, suppress the Nrf2-dependent antioxidant response. The expression of the marker genes NQO1, HMOX1 and GST2A was suppressed upon treatment of 11Ξ²-HSD1 expressing cells with cortisone, an effect that was reversed by 11Ξ²-HSD1 inhibitors. Furthermore, our results demonstrate that elevated glucocorticoids lowered the ability of cells to detoxify H(2)O(2). Moreover, a comparison of gene expression in male and female rats revealed an opposite sexual dimorphism with an inverse relationship between 11Ξ²-HSD1 and Nrf2 target gene expression.; The results demonstrate a suppression of the cellular antioxidant defence capacity by glucocorticoids and suggest that elevated 11Ξ²-HSD1 activity may lead to impaired Nrf2-dependent antioxidant response. The gender-specific differences in hepatic expression levels of 11Ξ²-HSD1 and Nrf2 target genes and the impact of pharmacological inhibition of 11Ξ²-HSD1 on improving cellular capacity to cope with oxidative stress warrants further studies in vivo
Prognostic significance of fascin expression in advanced colorectal cancer: an immunohistochemical study of colorectal adenomas and adenocarcinomas
BACKGROUND: Fascin is an actin bundling protein with roles in the formation of cell protrusions and motility of mesenchymal and neuronal cells. Fascin is normally low or absent from epithelia, but is upregulated in several epithelial neoplasms where it may contribute to an invasive phenotype. Here, we report on the prevalence and potential clinical significance of fascin expression in relation to the progression of colorectal adenocarcinoma and to tumor cell proliferation as measured by Ki67 index. METHODS: Conventional tissue sections of 107 colorectal adenomas and 35 adenocarcinomas were analyzed by immunohistochemistry for fascin and Ki67 expression. Fascin expression and Ki67 proliferation index were also investigated by use of a tissue microarray containing cores from a further 158 colorectal adenocarcinomas and 15 adenomas linked to a CCF, IRB-approved database with a mean of 38 months of clinical follow-up. Survival analysis was carried out by the Kaplan-Meier and Cox regression methods. RESULTS: Fascin was not expressed by the normal colonic epithelium. In conventional sections, 16% of adenomas and 26% of adenocarcinomas showed fascin expression in greater than 10% of the tumor cells. In the clinically-annotated tumors, fascin immunoreactivity was more common in tumors located in the proximal colon (p = 0.009), but was not associated with age, gender, or TNM stage. Patients with stage III/IV adenocarcinomas (n = 62) with strong fascin immunoreactivity had a worse prognosis than patients with low or absent fascin, (3-year overall survival of 11% versus 43% for fascin-negative patients; p = 0.023). In adenomas, fascin and Ki67 tended to be inversely correlated at the cellular level; this trend was less apparent in adenocarcinomas. CONCLUSION: Fascin is upregulated in a proportion of adenomas, where its expression is often focal. Strong and diffuse expression was seen in a subset of advanced colorectal adenocarcinomas that correlated with shorter survival in stage III and IV patients. Fascin may have prognostic value as an early biomarker for more aggressive colorectal adenocarcinomas
One step closer to understanding the role of bacteria in diabetic foot ulcers: characterising the microbiome of ulcers
Background:
The aim of this study was to characterise the microbiome of new and recurrent diabetic foot ulcers using 16S amplicon sequencing (16S AS), allowing the identification of a wider range of bacterial species that may be important in the development of chronicity in these debilitating wounds. Twenty patients not receiving antibiotics for the past three months were selected, with swabs taken from each individual for culture and 16S AS. DNA was isolated using a combination of bead beating and kit extraction. Samples were sequenced on the Illumina Hiseq 2500 platform.
Results:
Conventional laboratory culture showed positive growth from only 55 % of the patients, whereas 16S AS was positive for 75 % of the patients (41 unique genera, representing 82 different operational taxonomic units (OTUβs). S. aureus was isolated in 72 % of culture-positive samples, whereas the most commonly detected bacteria in all ulcers were Peptoniphilusspp., Anaerococcus spp. and Corynebacterium spp., with the addition of Staphylococcus spp. in new ulcers. The majority of OTUβs residing in both new and recurrent ulcers (over 67 %) were identified as facultative or strict anaerobic Gram-positive organisms. Principal component analysis (PCA) showed no difference in clustering between the two groups (new and recurrent ulcers).
Conclusions:
The abundance of anaerobic bacteria has important implications for treatment as it suggests that the microbiome of each ulcer βstarts afreshβ and that, although diverse, are not distinctly different from one another with respect to new or recurrent ulcers. Therefore, when considering antibiotic therapy the duration of current ulceration may be a more important consideration than a history of healed ulcer
Emergency department spirometric volume and base deficit delineate risk for torso injury in stable patients
BACKGROUND: We sought to determine torso injury rates and sensitivities associated with fluid-positive abdominal ultrasound, metabolic acidosis (increased base deficit and lactate), and impaired pulmonary physiology (decreased spirometric volume and PaO(2)/FiO(2)). METHODS: Level I trauma center prospective pilot and post-pilot study (2000β2001) of stable patients. Increased base deficit was < 0.0 in ethanol-negative and β€ -3.0 in ethanol-positive patients. Increased lactate was > 2.5 mmol/L in ethanol-negative and β₯ 3.0 mmol/L in ethanol-positive patients. Decreased PaO(2)/FiO(2 )was < 350 and decreased spirometric volume was < 1.8 L. RESULTS: Of 215 patients, 66 (30.7%) had a torso injury (abdominal/pelvic injury n = 35 and/or thoracic injury n = 43). Glasgow Coma Scale score was 14.8 Β± 0.5 (13β15). Torso injury rates and sensitivities were: abdominal ultrasound negative and normal base deficit, lactate, PaO(2)/FiO(2), and spirometric volume β 0.0% & 0.0%; normal base deficit and normal spirometric volume β 4.2% & 4.5%; chest/abdominal soft tissue injury β 37.8% & 47.0%; increased lactate β 39.7% & 47.0%; increased base deficit β 41.3% & 75.8%; increased base deficit and/or decreased spirometric volume β 43.8% & 95.5%; decreased PaO(2)/FiO(2 )β 48.9% & 33.3%; positive abdominal ultrasound β 62.5% & 7.6%; decreased spirometric volume β 73.4% & 71.2%; increased base deficit and decreased spirometric volume β 82.9% & 51.5%. CONCLUSIONS: Trauma patients with normal base deficit and spirometric volume are unlikely to have a torso injury. Patients with increased base deficit or lactate, decreased spirometric volume, decreased PaO(2)/FiO(2), or positive FAST have substantial risk for torso injury. Increased base deficit and/or decreased spirometric volume are highly sensitive for torso injury. Base deficit and spirometric volume values are readily available and increase or decrease the suspicion for torso injury
Ethical issues in human genomics research in developing countries
<p>Abstract</p> <p>Background</p> <p>Genome-wide association studies (GWAS) provide a powerful means of identifying genetic variants that play a role in common diseases. Such studies present important ethical challenges. An increasing number of GWAS is taking place in lower income countries and there is a pressing need to identify the particular ethical challenges arising in such contexts. In this paper, we draw upon the experiences of the MalariaGEN Consortium to identify specific ethical issues raised by such research in Africa, Asia and Oceania.</p> <p>Discussion</p> <p>We explore ethical issues in three key areas: protecting the interests of research participants, regulation of international collaborative genomics research and protecting the interests of scientists in low income countries. With regard to participants, important challenges are raised about community consultation and consent. Genomics research raises ethical and governance issues about sample export and ownership, about the use of archived samples and about the complexity of reviewing such large international projects. In the context of protecting the interests of researchers in low income countries, we discuss aspects of data sharing and capacity building that need to be considered for sustainable and mutually beneficial collaborations.</p> <p>Summary</p> <p>Many ethical issues are raised when genomics research is conducted on populations that are characterised by lower average income and literacy levels, such as the populations included in MalariaGEN. It is important that such issues are appropriately addressed in such research. Our experience suggests that the ethical issues in genomics research can best be identified, analysed and addressed where ethics is embedded in the design and implementation of such research projects.</p
The Transcription Factor AmrZ Utilizes Multiple DNA Binding Modes to Recognize Activator and Repressor Sequences of Pseudomonas aeruginosa Virulence Genes
AmrZ, a member of the Ribbon-Helix-Helix family of DNA binding proteins, functions as both a transcriptional activator and repressor of multiple genes encoding Pseudomonas aeruginosa virulence factors. The expression of these virulence factors leads to chronic and sustained infections associated with worsening prognosis. In this study, we present the X-ray crystal structure of AmrZ in complex with DNA containing the repressor site, amrZ1. Binding of AmrZ to this site leads to auto-repression. AmrZ binds this DNA sequence as a dimer-of-dimers, and makes specific base contacts to two half sites, separated by a five base pair linker region. Analysis of the linker region shows a narrowing of the minor groove, causing significant distortions. AmrZ binding assays utilizing sequences containing variations in this linker region reveals that secondary structure of the DNA, conferred by the sequence of this region, is an important determinant in binding affinity. The results from these experiments allow for the creation of a model where both intrinsic structure of the DNA and specific nucleotide recognition are absolutely necessary for binding of the protein. We also examined AmrZ binding to the algD promoter, which results in activation of the alginate exopolysaccharide biosynthetic operon, and found the protein utilizes different interactions with this site. Finally, we tested the in vivo effects of this differential binding by switching the AmrZ binding site at algD, where it acts as an activator, for a repressor binding sequence and show that differences in binding alone do not affect transcriptional regulation
- β¦