15,484 research outputs found

    Fluid mechanics of nodal flow due to embryonic primary cilia

    Get PDF
    Breaking of left–right symmetry is crucial in vertebrate development. The role of cilia-driven flow has been the subject of many recent publications, but the underlying mechanisms remain controversial. At approximately 8 days post-fertilization, after the establishment of the dorsal–ventral and anterior–posterior axes, a depressed structure is found on the ventral side of mouse embryos, termed the ventral node. Within the node, ‘whirling’ primary cilia, tilted towards the posterior, drive a flow implicated in the initial left–right signalling asymmetry. However, the underlying fluid mechanics have not been fully and correctly explained until recently and accurate characterization is required in determining how the flow triggers the downstream signalling cascades. Using the approximation of resistive force theory, we show how the flow is produced and calculate the optimal configuration to cause maximum flow, showing excellent agreement with in vitro measurements and numerical simulation, and paralleling recent analogue experiments. By calculating numerical solutions of the slender body theory equations, we present time-dependent physically based fluid dynamics simulations of particle pathlines in flows generated by large arrays of beating cilia, showing the far-field radial streamlines predicted by the theory

    Investigation of variables in turbine erosion, influence of aerodynamic and geometric parameters

    Get PDF
    Influence of aerodynamic and geometric parameters in turbine erosio

    A viscoelastic traction layer model of mucociliary flow

    Get PDF
    A new mathematical model of the transport of mucus and periciliary liquid (PCL) in the airways by cilia is presented. Mucus is represented by a linearly viscoelastic fluid, the mat of cilia is modelled as an ‘active porous medium.’ The propulsive effect of the cilia is modelled by a time-dependent force acting in a shear-thinned ‘traction layer’ between the mucus and the PCL. The effects of surface and interface tension are modelled by constraining the mucus free surface and mucus–PCL interface to be flat. It is assumed that the epithelium is impermeable to fluid. Using Fourier series, the system is converted into ODEs and solved numerically. We calculate values for mean mucus speed close to those observed by Matsui et~al. [{J. Clin. Invest.}, 102(6):1125’1131, 1998], (~40 ÎŒms−1). We obtain more detail regarding the dynamics of the flow and the nonlinear relationships between physical parameters in healthy and diseased states than in previously published models. Pressure gradients in the PCL caused by interface and surface tension are vital to ensuring efficient transport of mucus, and the role of the mucus–PCL interface appears to be to support such pressure gradients, ensuring efficient transport. Mean transport of PCL is found to be very small, consistent with previous analyses, providing insight into theories regarding the normal tonicity of PCL

    Frustration effects in magnetic molecules

    Full text link
    By means of exact diagonalization we study the ground-state and the low-temperature physics of the Heisenberg antiferromagnet on the cuboctahedron and the icosidodecahedron. Both are frustrated magnetic polytopes and correspond to the arrangement of magnetic atoms in the magnetic molecules Cu12La8 and Mo72Fe30. The interplay of strong quantum fluctuations and frustration influences the ground state spin correlations drastically and leads to an interesting magnetization process at low temperatures. Furthermore the frustration yields low-lying non-magnetic excitations resulting in an extra low-temperature peak in the specific heat.Comment: 4 pages, 7 figure

    Experimental determination of dipole moments for molecular ions: Improved measurements for ArH^+

    Get PDF
    An improved value for the dipole moment of ArH^+ has been obtained from new measurements of the rotational g factors of ArH^+ and ArD^+ made with tunable far‐IR laser spectroscopy. Systematic errors present in earlier measurements have been eliminated. The new result (ÎŒ=3.0±0.6 D) is slightly higher than the ab initio value of Rosmus (2.2 D) at the 2σ limits of precision

    Constraints on the age and dilution of Pacific Exploratory Mission-Tropics biomass burning plumes from the natural radionuclide tracer 210Pb

    Get PDF
    During the NASA Global Troposphere Experiment Pacific Exploratory Mission-Tropics (PEM-Tropics) airborne sampling campaign we found unexpectedly high concentrations of aerosol-associated 210Pb throughout the free troposphere over the South Pacific. Because of the remoteness of the study region, we expected specific activities to be generally less than 35 ÎŒBq m−3 but found an average in the free troposphere of 107 ÎŒBq m−3. This average was elevated by a large number of very active (up to 405 ÎŒBq m−3) samples that were associated with biomass burning plumes encountered on nearly every PEM-Tropics flight in the southern hemisphere. We use a simple aging and dilution model, which assumes that 222Rn and primary combustion products are pumped into the free troposphere in wet convective systems over fire regions (most likely in Africa), to explain the elevated 210Pb activities. This model reproduces the observed 210Pb activities very well, and predicts the ratios of four hydrocarbon species (emitted by combustion) to CO to better than 20% in most cases. Plume ages calculated by the model depend strongly on the assumed 222Rn activities in the initial plume, but using values plausible for continental boundary layer air yields ages that are consistent with travel times from Africa to the South Pacific calculated with a back trajectory model. The model also shows that despite being easily recognized through the large enhancements of biomass burning tracers, these plumes must have entrained large fractions of the surrounding ambient air during transport

    Cosmological Constraints from Moments of the Thermal Sunyaev-Zel'dovich Effect

    Full text link
    In this paper, we explain how moments of the thermal Sunyaev-Zel'dovich (tSZ) effect can constrain both cosmological parameters and the astrophysics of the intracluster medium (ICM). As the tSZ signal is strongly non-Gaussian, higher moments of tSZ maps contain useful information. We first calculate the dependence of the tSZ moments on cosmological parameters, finding that higher moments scale more steeply with sigma_8 and are sourced by more massive galaxy clusters. Taking advantage of the different dependence of the variance and skewness on cosmological and astrophysical parameters, we construct a statistic, ||/^1.4, which cancels much of the dependence on cosmology (i.e., sigma_8) yet remains sensitive to the astrophysics of intracluster gas (in particular, to the gas fraction in low-mass clusters). Constraining the ICM astrophysics using this statistic could break the well-known degeneracy between cosmology and gas physics in tSZ measurements, allowing for tight constraints on cosmological parameters. Although detailed simulations will be needed to fully characterize the accuracy of this technique, we provide a first application to data from the Atacama Cosmology Telescope and the South Pole Telescope. We estimate that a Planck-like full-sky tSZ map could achieve a <1% constraint on sigma_8 and a 1-sigma error on the sum of the neutrino masses that is comparable to the existing lower bound from oscillation measurements.Comment: 11 pages, 12 figures, to be submitted to Phys. Rev. D; v2: 14 pages, 16 figures, matches PRD accepted version (changes from v1 include additional calculations with primordial non-Gaussianity and a new appendix discussing the tSZ kurtosis

    Mammalian Sperm Motility: Observation and Theory

    Get PDF
    Mammalian spermatozoa motility is a subject of growing importance because of rising human infertility and the possibility of improving animal breeding. We highlight opportunities for fluid and continuum dynamics to provide novel insights concerning the mechanics of these specialized cells, especially during their remarkable journey to the egg. The biological structure of the motile sperm appendage, the flagellum, is described and placed in the context of the mechanics underlying the migration of mammalian sperm through the numerous environments of the female reproductive tract. This process demands certain specific changes to flagellar movement and motility for which further mechanical insight would be valuable, although this requires improved modeling capabilities, particularly to increase our understanding of sperm progression in vivo. We summarize current theoretical studies, highlighting the synergistic combination of imaging and theory in exploring sperm motility, and discuss the challenges for future observational and theoretical studies in understanding the underlying mechanics.\ud Acronyms and Definitions\ud Acrosome: the cap of the sperm head containing enzymes allowing penetration of the zona pellucida via the acrosome reaction\ud Adenosine triphosphate (ATP): the currency unit of chemical energy transfer in living cells\ud Axoneme: a phylogenetically conserved structure within the eukaryotic flagellum consisting of a ring of nine microtubule doublets and a central pair, frequently referred to as 9 + 2\ud Bending moment density: the moment per unit length associated with flagellar bending; it can be divided into a hydrodynamic moment, an elastic moment (from the flagellar bending stiffness), an active moment (generated by dyneins exerting forces between adjacent microtubule doublets), and a passive moment resisting shear\ud Capacitation: the physiological state of a sperm required for fertilization, which is accompanied by the motility patterns associated with hyperactivation, characterized in saline by high-amplitude asymmetric beating\ud Central pair: a pair of microtubules along the length of the axoneme, symmetrically and slightly offset from the axoneme centerline\ud Cumulus oophorus: the outer vestment of the mammalian egg consisting of hundreds of cells radiating out from the egg embedded within a non-Newtonian hyaluronic acid gel\ud Dynein: a molecular motor within the axoneme, attached between adjacent microtubule doublets, that exerts a shearing force to induce axonemal bending\ud Flagellum: a motile cellular appendage that drives the swimming of sperm and other cells; this article focuses on the eukaryotic flagellum\ud Microtubule doublet: a pair of proteinaceous filament structures running the length of the axoneme; dyneins drive their bending, which induces flagellar motion\ud Mid-piece: the region of a sperm flagellum with a mitochondrial sheath, where ATP is generated\ud Oocyte: the egg\ud Outer dense fibers and fibrous sheath: accessory structures reinforcing the mammalian sperm flagellum; the combined axoneme and accessory structures are referred to as 9+9+2\ud Resistive-force theory: an approximation for the local drag of a slender filament element in Stokes flow (or a viscoelastic generalization thereof)\ud Rheotaxis: directed motility in response to the influence of fluid flow\ud Shear: in the context of the flagellum, the relative movement of adjacent microtubule doublets\ud Slender-body theory: an improved approximation for the local drag on a slender filament element in Stokes flow (or a viscoelastic generalization thereof)\ud Zona pellucida: a tough glycoprotein coat between the human egg and the cumulus oophorus, which a sperm must penetrate for successful fertilizatio
    • 

    corecore