130 research outputs found

    Seroprevalence following the second wave of pandemic 2009 H1N1 influenza in Pittsburgh, PA, USA

    Get PDF
    Background: In April 2009, a new pandemic strain of influenza infected thousands of persons in Mexico and the United States and spread rapidly worldwide. During the ensuing summer months, cases ebbed in the Northern Hemisphere while the Southern Hemisphere experienced a typical influenza season dominated by the novel strain. In the fall, a second wave of pandemic H1N1 swept through the United States, peaking in most parts of the country by mid October and returning to baseline levels by early December. The objective was to determine the seroprevalence of antibodies against the pandemic 2009 H1N1 influenza strain by decade of birth among Pittsburgh-area residents. Methods and Findings: Anonymous blood samples were obtained from clinical laboratories and categorized by decade of birth from 1920-2009. Using hemagglutination-inhibition assays, approximately 100 samples per decade (n = 846) were tested from blood samples drawn on hospital and clinic patients in mid-November and early December 2009. Age specific seroprevalences against pandemic H1N1 (A/California/7/2009) were measured and compared to seroprevalences against H1N1 strains that had previously circulated in the population in 2007, 1957, and 1918. (A/Brisbane/59/2007, A/Denver/1/ 1957, and A/South Carolina/1/1918). Stored serum samples from healthy, young adults from 2008 were used as a control group (n = 100). Seroprevalences against pandemic 2009 H1N1 influenza varied by age group, with children age 10-19 years having the highest seroprevalence (45%), and persons age 70-79 years having the lowest (5%). The baseline seroprevalence among control samples from 18-24 year-olds was 6%. Overall seroprevalence against pandemic H1N1 across all age groups was approximately 21%. Conclusions: After the peak of the second wave of 2009 H1N1, HAI seroprevalence results suggest that 21% of persons in the Pittsburgh area had become infected and developed immunity. Extrapolating to the entire US population, we estimate that at least 63 million persons became infected in 2009. As was observed among clinical cases, this sero-epidemiological study revealed highest infection rates among school-age children. © 2010 Zimmer et al

    Characteristics of HIV-1 Discordant Couples Enrolled in a Trial of HSV-2 Suppression to Reduce HIV-1 Transmission: The Partners Study

    Get PDF
    Background: The Partners HSV-2/HIV-1 Transmission Study (Partners Study) is a phase III, placebo-controlled trial of daily acyclovir for genital herpes (HSV-2) suppression among HIV-1/HSV-2 co-infected persons to reduce HIV-1 transmission to their HIV-1 susceptible partners, which requires recruitment of HIV-1 serodiscordant heterosexual couples. We describe the baseline characteristics of this cohort. Methods: HIV-1 serodiscordant heterosexual couples, in which the HIV-1 infected partner was HSV-2 seropositive, had a CD4 count ≥250 cells/mcL and was not on antiretroviral therapy, were enrolled at 14 sites in East and Southern Africa. Demographic, behavioral, clinical and laboratory characteristics were assessed. Results: Of the 3408 HIV-1 serodiscordant couples enrolled, 67% of the HIV-1 infected partners were women. Couples had cohabitated for a median of 5 years (range 2–9) with 28% reporting unprotected sex in the month prior to enrollment. Among HIV-1 susceptible participants, 86% of women and 59% of men were HSV-2 seropositive. Other laboratory-diagnosed sexually transmitted infections were uncommon (500 relative to <350, respectively, p<0.001). Conclusions: The Partners Study successfully enrolled a cohort of 3408 heterosexual HIV-1 serodiscordant couples in Africa at high risk for HIV-1 transmission. Follow-up of this cohort will evaluate the efficacy of acyclovir for HSV-2 suppression in preventing HIV-1 transmission and provide insights into biological and behavioral factors determining heterosexual HIV-1 transmission. Trial Registration ClinicalTrials.gov NCT0019451

    Identification of a Shared Genetic Susceptibility Locus for Coronary Heart Disease and Periodontitis

    Get PDF
    Recent studies indicate a mutual epidemiological relationship between coronary heart disease (CHD) and periodontitis. Both diseases are associated with similar risk factors and are characterized by a chronic inflammatory process. In a candidate-gene association study, we identify an association of a genetic susceptibility locus shared by both diseases. We confirm the known association of two neighboring linkage disequilibrium regions on human chromosome 9p21.3 with CHD and show the additional strong association of these loci with the risk of aggressive periodontitis. For the lead SNP of the main associated linkage disequilibrium region, rs1333048, the odds ratio of the autosomal-recessive mode of inheritance is 1.99 (95% confidence interval 1.33–2.94; P = 6.9×10−4) for generalized aggressive periodontitis, and 1.72 (1.06–2.76; P = 2.6×10−2) for localized aggressive periodontitis. The two associated linkage disequilibrium regions map to the sequence of the large antisense noncoding RNA ANRIL, which partly overlaps regulatory and coding sequences of CDKN2A/CDKN2B. A closely located diabetes-associated variant was independent of the CHD and periodontitis risk haplotypes. Our study demonstrates that CHD and periodontitis are genetically related by at least one susceptibility locus, which is possibly involved in ANRIL activity and independent of diabetes associated risk variants within this region. Elucidation of the interplay of ANRIL transcript variants and their involvement in increased susceptibility to the interactive diseases CHD and periodontitis promises new insight into the underlying shared pathogenic mechanisms of these complex common diseases

    Prerequisites for a dry powder inhaler for children with cystic fibrosis

    Get PDF
    Correct inhalation technique is essential for effective use of dry powder inhalers (DPIs), as their effectiveness largely depends on the patient's inhalation manoeuvre. Children are an especially challenging target population for DPI development due to the large variability in understanding and inspiratory capacities. We previously performed a study in which we determined the prerequisites for a paediatric DPI in a mostly healthy paediatric population, for which we used an empty test inhaler with variable internal airflow resistance and mouthpiece. In the current study we investigated what specifications are required for a DPI for children with cystic fibrosis (CF), for which we expanded on our previous findings. We recorded flow profiles of 35 children with CF (aged 4.7-14.7 years) at three airflow resistances (0.031-0.045 kPa0.5.min.L-1) from which various inspiratory parameters were computed. Obstructions in the mouth during inhalation were recorded with a sinuscope. All children were able to perform a correct inhalation manoeuvre, although video analysis showed that children did not place the inhaler correctly in the mouth in 17% of the cases. No effect was found of medium to high airflow resistance on total inhaled volume, which implies that the whole resistance range tested is suitable for children with CF aged 4-14 years. No effect could be established of either mouthpiece design or airflow resistance on the occurrence of obstructions in the mouth cavity. This study confirms our previous conclusion that the development of DPIs specifically for children is highly desired. Such a paediatric DPI should function well at 0.5 L inhaled volume and a peak inspiratory flow rate of 20 to 30 L/min, depending on the internal airflow resistance. This resistance can be increased up to 0.045 kPa0.5.min.L-1 (medium-high) to reduce oropharyngeal deposition. A higher resistance may be less favourable due to its compromising effect on PIF and thereby on the energy available for powder dispersion

    Nutraceutical agents with anti-inflammatory properties prevent dietary saturated-fat induced disturbances in blood-brain barrier function in wild-type mice

    Get PDF
    Background: Emerging evidence suggests that disturbances in the blood–brain barrier (BBB) may be pivotal to the pathogenesis and pathology of vascular-based neurodegenerative disorders. Studies suggest that heightened systemic and central inflammations are associated with BBB dysfunction. This study investigated the effect of the anti-inflammatory nutraceuticals garlic extract-aged (GEA), alpha lipoic acid (ALA), niacin, and nicotinamide (NA) in a murine dietary-induced model of BBB dysfunction. Methods: C57BL/6 mice were fed a diet enriched in saturated fatty acids (SFA, 40% fat of total energy) for nine months to induce systemic inflammation and BBB disturbances. Nutraceutical treatment groups included the provision of either GEA, ALA, niacin or NA in the positive control SFA-group and in low-fat fed controls. Brain parenchymal extravasation of plasma derived immunoglobulin G (IgG) and large macromolecules (apolipoprotein (apo) B lipoproteins) measured by quantitative immunofluorescent microscopy, were used as markers of disturbed BBB integrity. Parenchymal glial fibrillar acidic protein (GFAP) and cyclooxygenase-2 (COX-2) were considered in the context of surrogate markers of neurovascular inflammation and oxidative stress. Total anti-oxidant status and glutathione reductase activity were determined in plasma.Results: Brain parenchymal abundance of IgG and apoB lipoproteins was markedly exaggerated in mice maintained on the SFA diet concomitant with significantly increased GFAP and COX-2, and reduced systemic antioxidative status. The nutraceutical GEA, ALA, niacin, and NA completely prevented the SFA-induced disturbances of BBB and normalized the measures of neurovascular inflammation and oxidative stress. Conclusions: The anti-inflammatory nutraceutical agents GEA, ALA, niacin, or NA are potent inhibitors of dietary fat-induced disturbances of BBB induced by systemic inflammations

    Redundant Mechanisms Prevent Mitotic Entry Following Replication Arrest in the Absence of Cdc25 Hyper-Phosphorylation in Fission Yeast

    Get PDF
    Following replication arrest the Cdc25 phosphatase is phosphorylated and inhibited by Cds1. It has previously been reported that expressing Cdc25 where 9 putative amino-terminal Cds1 phosphorylation sites have been substituted to alanine results in bypass of the DNA replication checkpoint. However, these results were acquired by expression of the phosphorylation mutant using a multicopy expression vector in a genetic background where the DNA replication checkpoint is intact. In order to clarify these results we constructed a Cdc25(9A)-GFP native promoter integrant and examined its effect on the replication checkpoint at endogenous expression levels. In this strain the replication checkpoint operates normally, conditional on the presence of the Mik1 kinase. In response to replication arrest the Cdc25(9A)-GFP protein is degraded, suggesting the presence of a backup mechanism to eliminate the phosphatase when it cannot be inhibited through phosphorylation

    Wolbachia Symbiont Infections Induce Strong Cytoplasmic Incompatibility in the Tsetse Fly Glossina morsitans

    Get PDF
    Tsetse flies are vectors of the protozoan parasite African trypanosomes, which cause sleeping sickness disease in humans and nagana in livestock. Although there are no effective vaccines and efficacious drugs against this parasite, vector reduction methods have been successful in curbing the disease, especially for nagana. Potential vector control methods that do not involve use of chemicals is a genetic modification approach where flies engineered to be parasite resistant are allowed to replace their susceptible natural counterparts, and Sterile Insect technique (SIT) where males sterilized by chemical means are released to suppress female fecundity. The success of genetic modification approaches requires identification of strong drive systems to spread the desirable traits and the efficacy of SIT can be enhanced by identification of natural mating incompatibility. One such drive mechanism results from the cytoplasmic incompatibility (CI) phenomenon induced by the symbiont Wolbachia. CI can also be used to induce natural mating incompatibility between release males and natural populations. Although Wolbachia infections have been reported in tsetse, it has been a challenge to understand their functional biology as attempts to cure tsetse of Wolbachia infections by antibiotic treatment damages the obligate mutualistic symbiont (Wigglesworthia), without which the flies are sterile. Here, we developed aposymbiotic (symbiont-free) and fertile tsetse lines by dietary provisioning of tetracycline supplemented blood meals with yeast extract, which rescues Wigglesworthia-induced sterility. Our results reveal that Wolbachia infections confer strong CI during embryogenesis in Wolbachia-free (GmmApo) females when mated with Wolbachia-infected (GmmWt) males. These results are the first demonstration of the biological significance of Wolbachia infections in tsetse. Furthermore, when incorporated into a mathematical model, our results confirm that Wolbachia can be used successfully as a gene driver. This lays the foundation for new disease control methods including a population replacement approach with parasite resistant flies. Alternatively, the availability of males that are reproductively incompatible with natural populations can enhance the efficacy of the ongoing sterile insect technique (SIT) applications by eliminating the need for chemical irradiation

    Viral, bacterial, and fungal infections of the oral mucosa:Types, incidence, predisposing factors, diagnostic algorithms, and management

    Get PDF

    A bodhisattva-spirit-oriented counselling framework: inspired by Vimalakīrti wisdom

    Get PDF

    Feeding soy protein isolate and oils rich in omega-3 polyunsaturated fatty acids affected mineral balance, but not bone in a rat model of autosomal recessive polycystic kidney disease

    Get PDF
    Background: Polycystic kidney disease (PKD), a genetic disorder characterized by multiple cysts and renal failure at an early age. In children, kidney disease is often accompanied by disordered mineral metabolism, failure to achieve peak bone mass, and reduced adult height. Optimizing bone health during the growth stage may preserve against bone loss associated with early renal dysfunction in PKD. Dietary soy protein and omega-3 polyunsaturated fatty acid (n-3 PUFA) have been reported to ameliorate PKD and to promote bone health. The study objective was to determine the bone effects of feeding soy protein and/or n-3 PUFAs in a rat model of PKD.Methods: Weanling female PCK rats (n = 12/group) were randomly assigned to casein + corn oil (Casein + CO), casein + soybean oil (Casein + SO), soy protein isolate + soybean oil (SPI + SO) or soy protein isolate + 1:1 soybean oil:salmon oil blend (SPI + SB) for 12 weeks.Results: Rats fed SPI + SO diet had shorter (P = 0.001) femur length than casein-fed rats. Rats fed SPI + SO and SPI + SB diet had higher (P = 0.04) calcium (Ca) and phosphorus (P) retention. However, there were no significant differences in femur and tibial Ca, P or bone mass between diet groups. There were also no significant difference in bone microarchitecture measured by micro-computed tomography or bone strength determined by three-point bending test between diet groups.Conclusions: Early diet management of PKD using SPI and/or n-3 PUFAs influenced bone longitudinal growth and mineral balance, but neither worsened nor enhanced bone mineralization, microarchitecture or strength.Peer reviewedNutritional Science
    corecore