27 research outputs found
GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function : a report from the COGENT consortium
CORRIGENDUM Molecular Psychiatry (2017) 22, 1651–1652 http://www.nature.com/articles/mp2017197.pdfThe complex nature of human cognition has resulted in cognitive genomics lagging behind many other fields in terms of gene discovery using genome-wide association study (GWAS) methods. In an attempt to overcome these barriers, the current study utilized GWAS meta-analysis to examine the association of common genetic variation (similar to 8M single-nucleotide polymorphisms (SNP) with minor allele frequency >= 1%) to general cognitive function in a sample of 35 298 healthy individuals of European ancestry across 24 cohorts in the Cognitive Genomics Consortium (COGENT). In addition, we utilized individual SNP lookups and polygenic score analyses to identify genetic overlap with other relevant neurobehavioral phenotypes. Our primary GWAS meta-analysis identified two novel SNP loci (top SNPs: rs76114856 in the CENPO gene on chromosome 2 and rs6669072 near LOC105378853 on chromosome 1) associated with cognitive performance at the genome-wide significance level (PPeer reviewe
Changes in seed dormancy of Rosa multibracteata Hemsl. & E. H. Wilson with increasing elevation in an arid valley in the eastern Tibetan Plateau
A case for conserving common species
I grew up in a country where fish were, first and foremost, food. At the age of nine or so, I started following my dad and uncle to nearby rivers to fish on weekends, and soon I learned to make my own tackle and go back to the rivers to fish with my friends. We never caught a lot of fish, but every fish we caught came home with us to be eaten. It never occurred to us to consider what ecological role these fish might play or how they fit into the ecosystem. In Ghana, West Africa, like in almost all the developing countries in sub-Saharan Africa, viewing fish primarily as food flows naturally from the need to survive. Once survival is secured, humans can start thinking about other things, like prestige or social status, for example [1]. As I entered my postdoc in ecology and conservation—me, a Ghanaian who identified more with fisheries and natural resource management—I felt the distinction keenly. I had not studied for any of my degrees under brand-name ecologists or conservation scientists, which I had come to realize was helpful in launching an academic career in our field. I understood then that professional pedigree really matters. What I know now is that this is not merely for the prestige and access such mentorship provides but for the intellectual shelter and sustenance I must provide as a principal investigator (PI). This is the story of building my niche as an ecosystem engineer. But it is also the story of recognizing the ecological role of species we take for granted—and why we should fund research on common species that may sustain the rare ones, some of which we have yet to discover
