830 research outputs found

    Cooperation of decay-accelerating factor and membrane cofactor protein in regulating survival of human cervical cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Decay-accelerating factor (DAF) and membrane cofactor protein (MCP) are the key molecules involved in cell protection against autologus complement, which restricts the action of complement at critical stages of the cascade reaction. The cooperative effect of DAF and MCP on the survival of human cervical cancer cell (ME180) has not been demonstrated.</p> <p>Methods</p> <p>In this study we applied, for the first time, short hairpin RNA (shRNA) to knock down the expression of the DAF and MCP with the aim of exploiting complement more effectively for tumor cell damage. Meanwhile, we investigated the cooperative effects of DAF and MCP on the viability and migration, moreover the proliferation of ME180 cell.</p> <p>Results</p> <p>The results showed that shRNA inhibition of DAF and MCP expression enhanced complement-dependent cytolysis (CDC) up to 39% for MCP and up to 36% for DAF, and the combined inhibition of both regulators yielded further additive effects in ME180 cells. Thus, the activities of DAF and MCP, when present together, are greater than the sum of the two protein individually.</p> <p>Conclusion</p> <p>These data indicated that combined DAF and MCP shRNA described in this study may offer an additional alternative to improve the efficacy of antibody-and complement-based cancer immunotherapy.</p

    Engineering and Characterization of an Enhanced Fluorescent Protein Voltage Sensor

    Get PDF
    BACKGROUND: Fluorescent proteins have been used to generate a variety of biosensors to optically monitor biological phenomena in living cells. Among this class of genetically encoded biosensors, reporters for membrane potential have been a particular challenge. The use of presently known voltage sensor proteins is limited by incorrect subcellular localization and small or absent voltage responses in mammalian cells. RESULTS: Here we report on a fluorescent protein voltage sensor with superior targeting to the mammalian plasma membrane and high responsiveness to membrane potential signaling in excitable cells. CONCLUSIONS AND SIGNIFICANCE: This biosensor, which we termed VSFP2.1, is likely to lead to new methods of monitoring electrically active cells with cell type specificity, non-invasively and in large numbers, simultaneously

    Dopamine in the dorsal hippocampus impairs the late-consolidation of cocaine-associated memory

    Get PDF
    Cocaine is thought to be addictive because it elevates dopamine levels in the striatum, reinforcing drug-seeking habits. Cocaine also elevates dopamine levels in the hippocampus, a structure involved in contextual conditioning as well as in reward function. Hippocampal dopamine promotes the late phase of consolidation of an aversive step-down avoidance memory. Here, we examined the role of hippocampal dopamine function in the persistence of the conditioned increase in preference for a cocaine-associated compartment. Blocking dorsal hippocampal D1-type receptors (D1Rs) but not D2-type receptors (D2Rs) 12 h after a single training trial extended persistence of the normally short-lived memory; conversely, a general and a specific phospholipase C-coupled D1R agonist (but not a D2R or adenylyl cyclase-coupled D1R agonist) decreased the persistence of the normally long-lived memory established by three-trial training. These effects of D1 agents were opposite to those previously established in a step-down avoidance task, and were here also found to be opposite to those in a lithium chloride-conditioned avoidance task. After returning to normal following cocaine injection, dopamine levels in the dorsal hippocampus were found elevated again at the time when dopamine antagonists and agonists were effective: between 13 and 17 h after cocaine injection. These findings confirm that, long after the making of a cocaine-place association, hippocampal activity modulates memory consolidation for that association via a dopamine-dependent mechanism. They suggest a dynamic role for dorsal hippocampal dopamine in this late-phase memory consolidation and, unexpectedly, differential roles for late consolidation of memories for places that induce approach or withdrawal because of a drug association.Fil: Kramar, Cecilia Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Chefer, Vladimir I.. National Institutes of Health; Estados UnidosFil: Wise, Roy A.. National Institutes of Health; Estados UnidosFil: Medina, Jorge Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas; ArgentinaFil: Barbano, María Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; Argentin

    Isgur-Wise function in a QCD inspired potential model with confinement as parent in the Variationally Improved Perturbation Theory (VIPT)

    Full text link
    We have recently reported the calculation of slope and curvature of Isgur-Wise function based on Variationally Improved Perturbation Theory (VIPT) in a QCD inspired potential model. In that work, Coulombic potential was taken as the parent while the linear one as the perturbation.In this work, we choose the linear one as the parent with Coulombic one as the perturbation and see the consequences. Keywords: VIPT,Isgur-Wise function, charge radii and convexity pa- rameter

    Imbalanced functional link between executive control network and reward network explain the online-game seeking behaviors in Internet gaming disorder

    Get PDF
    Literatures have shown that Internet gaming disorder (IGD) subjects show impaired executive control and enhanced reward sensitivities than healthy controls. However, how these two networks jointly affect the valuation process and drive IGD subjects' online-game-seeking behaviors remains unknown. Thirty-five IGD and 36 healthy controls underwent a resting-states scan in the MRI scanner. Functional connectivity (FC) was examined within control and reward network seeds regions, respectively. Nucleus accumbens (NAcc) was selected as the node to find the interactions between these two networks. IGD subjects show decreased FC in the executive control network and increased FC in the reward network when comparing with the healthy controls. When examining the correlations between the NAcc and the executive control/reward networks, the link between the NAcc - executive control network is negatively related with the link between NAcc - reward network. The changes (decrease/increase) in IGD subjects' brain synchrony in control/reward networks suggest the inefficient/overly processing within neural circuitry underlying these processes. The inverse proportion between control network and reward network in IGD suggest that impairments in executive control lead to inefficient inhibition of enhanced cravings to excessive online game playing. This might shed light on the mechanistic understanding of IGD

    Mesoscale flux-closure domain formation in single-crystal BaTiO3

    Get PDF
    Over 60 years ago, Charles Kittel predicted that quadrant domains should spontaneously form in small ferromagnetic platelets. He expected that the direction of magnetization within each quadrant should lie parallel to the platelet surface, minimizing demagnetizing fields,and that magnetic moments should be configured into an overall closed loop, or flux-closure arrangement. Although now a ubiquitous observation in ferromagnets, obvious flux-closure patterns have been somewhat elusive in ferroelectric materials. This is despite the analogous behaviour between these two ferroic subgroups and the recent prediction of dipole closure states by atomistic simulations research. Here we show Piezoresponse Force Microscopy images of mesoscopic dipole closure patterns in free-standing, single-crystal lamellae of BaTiO3. Formation of these patterns is a dynamical process resulting from system relaxation after the BaTiO3 has been poled with a uniform electric field. The flux-closure states are composed of shape conserving 90° stripe domains which minimize disclination stresses

    Gene-Expression Signature Predicts Postoperative Recurrence in Stage I Non-Small Cell Lung Cancer Patients

    Get PDF
    About 30% stage I non-small cell lung cancer (NSCLC) patients undergoing resection will recur. Robust prognostic markers are required to better manage therapy options. The purpose of this study is to develop and validate a novel gene-expression signature that can predict tumor recurrence of stage I NSCLC patients. Cox proportional hazards regression analysis was performed to identify recurrence-related genes and a partial Cox regression model was used to generate a gene signature of recurrence in the training dataset −142 stage I lung adenocarcinomas without adjunctive therapy from the Director's Challenge Consortium. Four independent validation datasets, including GSE5843, GSE8894, and two other datasets provided by Mayo Clinic and Washington University, were used to assess the prediction accuracy by calculating the correlation between risk score estimated from gene expression and real recurrence-free survival time and AUC of time-dependent ROC analysis. Pathway-based survival analyses were also performed. 104 probesets correlated with recurrence in the training dataset. They are enriched in cell adhesion, apoptosis and regulation of cell proliferation. A 51-gene expression signature was identified to distinguish patients likely to develop tumor recurrence (Dxy = −0.83, P<1e-16) and this signature was validated in four independent datasets with AUC >85%. Multiple pathways including leukocyte transendothelial migration and cell adhesion were highly correlated with recurrence-free survival. The gene signature is highly predictive of recurrence in stage I NSCLC patients, which has important prognostic and therapeutic implications for the future management of these patients

    Genome-Wide Identification of Bcl11b Gene Targets Reveals Role in Brain-Derived Neurotrophic Factor Signaling

    Get PDF
    B-cell leukemia/lymphoma 11B (Bcl11b) is a transcription factor showing predominant expression in the striatum. To date, there are no known gene targets of Bcl11b in the nervous system. Here, we define targets for Bcl11b in striatal cells by performing chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) in combination with genome-wide expression profiling. Transcriptome-wide analysis revealed that 694 genes were significantly altered in striatal cells over-expressing Bcl11b, including genes showing striatal-enriched expression similar to Bcl11b. ChIP-seq analysis demonstrated that Bcl11b bound a mixture of coding and non-coding sequences that were within 10 kb of the transcription start site of an annotated gene. Integrating all ChIP-seq hits with the microarray expression data, 248 direct targets of Bcl11b were identified. Functional analysis on the integrated gene target list identified several zinc-finger encoding genes as Bcl11b targets, and further revealed a significant association of Bcl11b to brain-derived neurotrophic factor/neurotrophin signaling. Analysis of ChIP-seq binding regions revealed significant consensus DNA binding motifs for Bcl11b. These data implicate Bcl11b as a novel regulator of the BDNF signaling pathway, which is disrupted in many neurological disorders. Specific targeting of the Bcl11b-DNA interaction could represent a novel therapeutic approach to lowering BDNF signaling specifically in striatal cells

    Early Detection of Erlotinib Treatment Response in NSCLC by 3′-Deoxy-3′-[18F]-Fluoro-L-Thymidine ([18F]FLT) Positron Emission Tomography (PET)

    Get PDF
    Background: Inhibition of the epidermal growth factor receptor (EGFR) has shown clinical success in patients with advanced non-small cell lung cancer (NSCLC). Somatic mutations of EGFR were found in lung adenocarcinoma that lead to exquisite dependency on EGFR signaling; thus patients with EGFR-mutant tumors are at high chance of response to EGFR inhibitors. However, imaging approaches affording early identification of tumor response in EGFR-dependent carcinomas have so far been lacking. Methodology/Principal Findings: We performed a systematic comparison of 3′-Deoxy-3′-[18F^{18}F]-fluoro-L-thymidine ([18F^{18}F]FLT) and 2-[18F^{18}F]-fluoro-2-deoxy-D-glucose ([18F^{18}F]FDG) positron emission tomography (PET) for their potential to identify response to EGFR inhibitors in a model of EGFR-dependent lung cancer early after treatment initiation. While erlotinib-sensitive tumors exhibited a striking and reproducible decrease in [18F^{18}F]FLT uptake after only two days of treatment, [18F^{18}F]FDG PET based imaging revealed no consistent reduction in tumor glucose uptake. In sensitive tumors, a decrease in [18F^{18}F]FLT PET but not [18F^{18}F]FDG PET uptake correlated with cell cycle arrest and induction of apoptosis. The reduction in [18F^{18}F]FLT PET signal at day 2 translated into dramatic tumor shrinkage four days later. Furthermore, the specificity of our results is confirmed by the complete lack of [18F^{18}F]FLT PET response of tumors expressing the T790M erlotinib resistance mutation of EGFR. Conclusions: [18F^{18}F]FLT PET enables robust identification of erlotinib response in EGFR-dependent tumors at a very early stage. [18F^{18}F]FLT PET imaging may represent an appropriate method for early prediction of response to EGFR TKI treatment in patients with NSCLC
    • …
    corecore