46 research outputs found

    Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    Get PDF
    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention

    The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals

    Get PDF
    To dissect the genetic architecture of blood pressure and assess effects on target organ damage, we analyzed 128,272 SNPs from targeted and genome-wide arrays in 201,529 individuals of European ancestry, and genotypes from an additional 140,886 individuals were used for validation. We identified 66 blood pressure–associated loci, of which 17 were new; 15 harbored multiple distinct association signals. The 66 index SNPs were enriched for cis-regulatory elements, particularly in vascular endothelial cells, consistent with a primary role in blood pressure control through modulation of vascular tone across multiple tissues. The 66 index SNPs combined in a risk score showed comparable effects in 64,421 individuals of non-European descent. The 66-SNP blood pressure risk score was significantly associated with target organ damage in multiple tissues but with minor effects in the kidney. Our findings expand current knowledge of blood pressure–related pathways and highlight tissues beyond the classical renal system in blood pressure regulation

    Impaired somatosensory discrimination of shape in Parkinson's disease: Association with caudate nucleus dopaminergic function

    No full text
    Tactile discrimination of macrogeometric objects in a two-alternative forced-choice procedure represents a demanding task involving somatosensory pathways and higher cognitive processing. The objects for somatosensory discrimination, i.e., rectangular parallelepipeds differing only in oblongness, were presented in sequential pairs to normal volunteers and 12 parkinsonian patients. The performance of patients was significantly impaired compared to normal volunteers. From a biochemical point of view, the patients were characterized by a severely reduced 6-[F-18]-fluoro-L-dopa (FDOPA) tracer metabolism in the basal ganglia, as measured using positron emission tomography (PET). Furthermore, reduced specific FDOPA metabolism in the putamen was consistent with the impaired motor capacities of the patients. The reduced specific FDOPA-uptake within the caudate nucleus was associated with additionally diminished somatosensory discrimination. This association, of low perception during task performance and decreased FDOPA-uptake, provides direct evidence for the role of the caudate nucleus in the cognitive part of the task. We suggest that directed attention and working memory were critically involved as a result of disturbed interactions between the head of the caudate nucleus and the dorsolateral prefrontal cortex. Furthermore, there were indications of an additional involvement of the mesolimbic system, which might be of importance during challenging situations such as forced choice. We conclude that differential effects on parts of the basal ganglia, during evolution of the degenerative process characteristic of Parkinson's disease, have profound consequences on the performance of skills, as shown here for a somatosensory discrimination task. (C) 1999 Wiley-Liss, Inc

    Impaired somatosensory discrimination of shape in Parkinson's disease:Association with caudate nucleus dopaminergic function

    No full text
    Tactile discrimination of macrogeometric objects in a two-alternative forced-choice procedure represents a demanding task involving somatosensory pathways and higher cognitive processing. The objects for somatosensory discrimination, i.e., rectangular parallelepipeds differing only in oblongness, were presented in sequential pairs to normal volunteers and 12 parkinsonian patients. The performance of patients was significantly impaired compared to normal volunteers. From a biochemical point of view, the patients were characterized by a severely reduced 6-[F-18]-fluoro-L-dopa (FDOPA) tracer metabolism in the basal ganglia, as measured using positron emission tomography (PET). Furthermore, reduced specific FDOPA metabolism in the putamen was consistent with the impaired motor capacities of the patients. The reduced specific FDOPA-uptake within the caudate nucleus was associated with additionally diminished somatosensory discrimination. This association, of low perception during task performance and decreased FDOPA-uptake, provides direct evidence for the role of the caudate nucleus in the cognitive part of the task. We suggest that directed attention and working memory were critically involved as a result of disturbed interactions between the head of the caudate nucleus and the dorsolateral prefrontal cortex. Furthermore, there were indications of an additional involvement of the mesolimbic system, which might be of importance during challenging situations such as forced choice. We conclude that differential effects on parts of the basal ganglia, during evolution of the degenerative process characteristic of Parkinson's disease, have profound consequences on the performance of skills, as shown here for a somatosensory discrimination task. (C) 1999 Wiley-Liss, Inc
    corecore