385 research outputs found
Efficacy of an intensive outpatient rehabilitation program in alcoholism: Predictors of outcome 6 months after treatment
Treatment of alcohol-dependent patients was primarily focused on inpatient settings in the past decades. The efficacy of these treatment programs has been evaluated in several studies and proven to be sufficient. However, with regard to the increasing costs in public healthcare systems, questions about alternative treatment strategies have been raised. Meanwhile, there is growing evidence that outpatient treatment might be comparably effective as inpatient treatment, at least for subgroups of alcohol dependents. On that background, the present study aimed to evaluate the efficacy of a high-structured outpatient treatment program in 103 alcohol-dependent patients. 74 patients (72%) terminated the outpatient treatment regularly. At 6 months' follow-up, 95% patients were successfully located and personally re-interviewed. Analyses revealed that 65 patients (64%) were abstinent at the 6-month follow-up evaluation and 37 patients ( 36%) were judged to be non-abstinent. Pretreatment variables which were found to have a negative impact (non-abstinence) on the 6-month outcome after treatment were a higher severity of alcohol dependence measured by a longer duration of alcohol dependence, a higher number of prior treatments and a stronger alcohol craving (measured by the Obsessive Compulsive Drinking Scale). Further patients with a higher degree of psychopathology measured by the Beck Depression Inventory (depression) and State-Trait Anxiety Inventory (anxiety) relapsed more often. In summary, results of this study indicate a favorable outcome of socially stable alcohol-dependent patients and patients with a lower degree of depression, anxiety and craving in an intensive outpatient rehabilitation program
Water diffusion in atmospherically relevant α-pinene secondary organic material
Secondary organic material (SOM) constitutes a large mass fraction of atmospheric aerosol particles. Understanding its impact on climate and air quality relies on accurate models of interactions with water vapour. Recent research shows that SOM can be highly viscous and can even behave mechanically like a solid, leading to suggestions that particles exist out of equilibrium with water vapour in the atmosphere. In order to quantify any kinetic limitation we need to know water diffusion coefficients for SOM, but this quantity has, until now, only been estimated and has not yet been measured. We have directly measured water diffusion coefficients in the water soluble fraction of α-pinene SOM between 240 and 280 K. Here we show that, although this material can behave mechanically like a solid, at 280 K water diffusion is not kinetically limited on timescales of 1 s for atmospheric-sized particles. However, diffusion slows as temperature decreases. We use our measured data to constrain a Vignes-type parameterisation, which we extend to lower temperatures to show that SOM can take hours to equilibrate with water vapour under very cold conditions. Our modelling for 100 nm particles predicts that under mid to upper tropospheric conditions radial inhomogeneities in water content produce a low viscosity surface region and more solid interior, with implications for heterogeneous chemistry and ice nucleation
Early programming of the oocyte epigenome temporally controls late prophase I transcription and chromatin remodelling
Oocytes are arrested for long periods of time in the prophase of the first meiotic division (prophase I). As chromosome condensation poses significant constraints to gene expression, the mechanisms regulating transcriptional activity in the prophase I-arrested oocyte are still not entirely understood. We hypothesized that gene expression during the prophase I arrest is primarily epigenetically regulated. Here we comprehensively define the Drosophila female germ line epigenome throughout oogenesis and show that the oocyte has a unique, dynamic and remarkably diversified epigenome characterized by the presence of both euchromatic and heterochromatic marks. We observed that the perturbation of the oocyte's epigenome in early oogenesis, through depletion of the dKDM5 histone demethylase, results in the temporal deregulation of meiotic transcription and affects female fertility. Taken together, our results indicate that the early programming of the oocyte epigenome primes meiotic chromatin for subsequent functions in late prophase I
New technologies for examining neuronal ensembles in drug addiction and fear
Correlational data suggest that learned associations are encoded within neuronal ensembles. However, it has been difficult to prove that neuronal ensembles mediate learned behaviours because traditional pharmacological and lesion methods, and even newer cell type-specific methods, affect both activated and non-activated neurons. Additionally, previous studies on synaptic and molecular alterations induced by learning did not distinguish between behaviourally activated and non-activated neurons. Here, we describe three new approaches—Daun02 inactivation, FACS sorting of activated neurons and c-fos-GFP transgenic rats — that have been used to selectively target and study activated neuronal ensembles in models of conditioned drug effects and relapse. We also describe two new tools — c-fos-tTA mice and inactivation of CREB-overexpressing neurons — that have been used to study the role of neuronal ensembles in conditioned fear
STIM2 regulates PKA-dependent phosphorylation and trafficking of AMPARs
STIMs (STIM1 and STIM2 in mammals) are transmembrane proteins that reside in the endoplasmic reticulum (ER) and regulate store-operated Ca2+ entry (SOCE). The function of STIMs in the brain is only beginning to be explored, and the relevance of SOCE in nerve cells is being debated. Here we identify STIM2 as a central organizer of excitatory synapses. STIM2, but not its paralogue STIM1, influences the formation of dendritic spines and shapes basal synaptic transmission in excitatory neurons. We further demonstrate that STIM2 is essential for cAMP/PKA-dependent phosphorylation of the AMPA receptor (AMPAR) subunit GluA1. cAMP triggers rapid migration of STIM2 to ER–plasma membrane (PM) contact sites, enhances recruitment of GluA1 to these ER-PM junctions, and promotes localization of STIM2 in dendritic spines. Both biochemical and imaging data suggest that STIM2 regulates GluA1 phosphorylation by coupling PKA to the AMPAR in a SOCE-independent manner. Consistent with a central role of STIM2 in regulating AMPAR phosphorylation, STIM2 promotes cAMP-dependent surface delivery of GluA1 through combined effects on exocytosis and endocytosis. Collectively our results point to a unique mechanism of synaptic plasticity driven by dynamic assembly of a STIM2 signaling complex at ER-PM contact sites
Communication Impairments in Mice Lacking Shank1: Reduced Levels of Ultrasonic Vocalizations and Scent Marking Behavior
Autism is a neurodevelopmental disorder with a strong genetic component. Core symptoms are abnormal reciprocal social interactions, qualitative impairments in communication, and repetitive and stereotyped patterns of behavior with restricted interests. Candidate genes for autism include the SHANK gene family, as mutations in SHANK2 and SHANK3 have been detected in several autistic individuals. SHANK genes code for a family of scaffolding proteins located in the postsynaptic density of excitatory synapses. To test the hypothesis that a mutation in SHANK1 contributes to the symptoms of autism, we evaluated Shank1−/− null mutant mice for behavioral phenotypes with relevance to autism, focusing on social communication. Ultrasonic vocalizations and the deposition of scent marks appear to be two major modes of mouse communication. Our findings revealed evidence for low levels of ultrasonic vocalizations and scent marks in Shank1−/− mice as compared to wildtype Shank1+/+ littermate controls. Shank1−/− pups emitted fewer vocalizations than Shank1+/+ pups when isolated from mother and littermates. In adulthood, genotype affected scent marking behavior in the presence of female urinary pheromones. Adult Shank1−/− males deposited fewer scent marks in proximity to female urine than Shank1+/+ males. Call emission in response to female urinary pheromones also differed between genotypes. Shank1+/+ mice changed their calling pattern dependent on previous female interactions, while Shank1−/− mice were unaffected, indicating a failure of Shank1−/− males to learn from a social experience. The reduced levels of ultrasonic vocalizations and scent marking behavior in Shank1−/− mice are consistent with a phenotype relevant to social communication deficits in autism.National Institute of Mental Health (U.S.) (Intramural Research Program)Simons Foundatio
Calcium Ions Promote Formation of Amyloid β-Peptide (1–40) Oligomers Causally Implicated in Neuronal Toxicity of Alzheimer's Disease
Amyloid β-peptide (Aβ) is directly linked to Alzheimer's disease (AD). In its monomeric form, Aβ aggregates to produce fibrils and a range of oligomers, the latter being the most neurotoxic. Dysregulation of Ca2+ homeostasis in aging brains and in neurodegenerative disorders plays a crucial role in numerous processes and contributes to cell dysfunction and death. Here we postulated that calcium may enable or accelerate the aggregation of Aβ. We compared the aggregation pattern of Aβ(1–40) and that of Aβ(1–40)E22G, an amyloid peptide carrying the Arctic mutation that causes early onset of the disease. We found that in the presence of Ca2+, Aβ(1–40) preferentially formed oligomers similar to those formed by Aβ(1–40)E22G with or without added Ca2+, whereas in the absence of added Ca2+ the Aβ(1–40) aggregated to form fibrils. Morphological similarities of the oligomers were confirmed by contact mode atomic force microscopy imaging. The distribution of oligomeric and fibrillar species in different samples was detected by gel electrophoresis and Western blot analysis, the results of which were further supported by thioflavin T fluorescence experiments. In the samples without Ca2+, Fourier transform infrared spectroscopy revealed conversion of oligomers from an anti-parallel β-sheet to the parallel β-sheet conformation characteristic of fibrils. Overall, these results led us to conclude that calcium ions stimulate the formation of oligomers of Aβ(1–40), that have been implicated in the pathogenesis of AD
Dietary and Behavioral Interventions Protect against Age Related Activation of Caspase Cascades in the Canine Brain
Lifestyle interventions such as diet, exercise, and cognitive training represent a quietly emerging revolution in the modern approach to counteracting age-related declines in brain health. Previous studies in our laboratory have shown that long-term dietary supplementation with antioxidants and mitochondrial cofactors (AOX) or behavioral enrichment with social, cognitive, and exercise components (ENR), can effectively improve cognitive performance and reduce brain pathology of aged canines, including oxidative damage and Aβ accumulation. In this study, we build on and extend our previous findings by investigating if the interventions reduce caspase activation and ceramide accumulation in the aged frontal cortex, since caspase activation and ceramide accumulation are common convergence points for oxidative damage and Aβ, among other factors associated with the aged and AD brain. Aged beagles were placed into one of four treatment groups: CON – control environment/control diet, AOX– control environment/antioxidant diet, ENR – enriched environment/control diet, AOX/ENR– enriched environment/antioxidant diet for 2.8 years. Following behavioral testing, brains were removed and frontal cortices were analyzed to monitor levels of active caspase 3, active caspase 9 and their respective cleavage products such as tau and semaphorin7a, and ceramides. Our results show that levels of activated caspase-3 were reduced by ENR and AOX interventions with the largest reduction occurring with combined AOX/ENR group. Further, reductions in caspase-3 correlated with reduced errors in a reversal learning task, which depends on frontal cortex function. In addition, animals treated with an AOX arm showed reduced numbers of cells expressing active caspase 9 or its cleavage product semaphorin 7A, while ENR (but not AOX) reduced ceramide levels. Overall, these data demonstrate that lifestyle interventions curtail activation of pro-degenerative pathways to improve cellular health and are the first to show that lifestyle interventions can regulate caspase pathways in a higher animal model of aging
Detection of amyloid beta aggregates in the brain of BALB/c mice after Chlamydia pneumoniae infection
Neuroinflammation, initiated by cerebral infection, is increasingly postulated as an aetiological factor in neurodegenerative diseases such as Alzheimer’s disease (AD). We investigated whether Chlamydia pneumoniae (Cpn) infection results in extracellular aggregation of amyloid beta (Aβ) in BALB/c mice. At 1 week post intranasal infection (p.i.), Cpn DNA was detected predominantly in the olfactory bulbs by PCR, whereas brains at 1 and 3 months p.i. were Cpn negative. At 1 and 3 months p.i., extracellular Aβ immunoreactivity was detected in the brain of Cpn-infected mice but also in the brain of mock-infected mice and mice that were neither Cpn infected nor mock infected. However, these extracellular Aβ aggregates showed morphological differences compared to extracellular Aβ aggregates detected in the brain of transgenic APP751SL/PS1M146L mice. These data do not unequivocally support the hypothesis that Cpn infection induces the formation of AD-like Aβ plaques in the brain of BALB/c mice, as suggested before. However, future studies are required to resolve these differences and to investigate whether Cpn is indeed an etiological factor in AD pathogenesis
Cocaine Is Low on the Value Ladder of Rats: Possible Evidence for Resilience to Addiction
International audienceBACKGROUND:Assessing the relative value of cocaine and how it changes with chronic drug use represents a long-standing goal in addiction research. Surprisingly, recent experiments in rats--by far the most frequently used animal model in this field--suggest that the value of cocaine is lower than previously thought.METHODOLOGY/PRINCIPAL FINDINGS:Here we report a series of choice experiments that better define the relative position of cocaine on the value ladder of rats (i.e., preference rank-ordering of different rewards). Rats were allowed to choose either taking cocaine or drinking water sweetened with saccharin--a nondrug alternative that is not biologically essential. By systematically varying the cost and concentration of sweet water, we found that cocaine is low on the value ladder of the large majority of rats, near the lowest concentrations of sweet water. In addition, a retrospective analysis of all experiments over the past 5 years revealed that no matter how heavy was past cocaine use most rats readily give up cocaine use in favor of the nondrug alternative. Only a minority, fewer than 15% at the heaviest level of past cocaine use, continued to take cocaine, even when hungry and offered a natural sugar that could relieve their need of calories.CONCLUSIONS/SIGNIFICANCE:This pattern of results (cocaine abstinence in most rats; cocaine preference in few rats) maps well onto the epidemiology of human cocaine addiction and suggests that only a minority of rats would be vulnerable to cocaine addiction while the large majority would be resilient despite extensive drug use. Resilience to drug addiction has long been suspected in humans but could not be firmly established, mostly because it is difficult to control retrospectively for differences in drug self-exposure and/or availability in human drug users. This conclusion has important implications for preclinical research on the neurobiology of cocaine addiction and for future medication development
- …
