811 research outputs found

    Printed thermocouple devices

    Get PDF
    A novel process for the fabrication of thermocouples using thick-film techniques has been developed. Thermoelectric reactions of 22 μV/°C per couple have been observed which are comparable to those of conventional thermocouples. This work outlines the potential for a rapid, lowcost, low temperature manufacturing solution for the production of electrical temperature sensors

    Experimental and theoretical investigation of ligand effects on the synthesis of ZnO nanoparticles

    Get PDF
    ZnO nanoparticles with highly controllable particle sizes(less than 10 nm) were synthesized using organic capping ligands in Zn(Ac)2 ethanolic solution. The molecular structure of the ligands was found to have significant influence on the particle size. The multi-functional molecule tris(hydroxymethyl)-aminomethane (THMA) favoured smaller particle distributions compared with ligands possessing long hydrocarbon chains that are more frequently employed. The adsorption of capping ligands on ZnnOn crystal nuclei (where n = 4 or 18 molecular clusters of(0001) ZnO surfaces) was modelled by ab initio methods at the density functional theory (DFT) level. For the molecules examined, chemisorption proceeded via the formation of Zn...O, Zn...N, or Zn...S chemical bonds between the ligands and active Zn2+ sites on ZnO surfaces. The DFT results indicated that THMA binds more strongly to the ZnO surface than other ligands, suggesting that this molecule is very effective at stabilizing ZnO nanoparticle surfaces. This study, therefore, provides new insight into the correlation between the molecular structure of capping ligands and the morphology of metal oxide nanostructures formed in their presence

    Phosphoenolpyruvate carboxylase dentified as a key enzyme in erythrocytic Plasmodium falciparum carbon metabolism

    Get PDF
    Phospoenolpyruvate carboxylase (PEPC) is absent from humans but encoded in thePlasmodium falciparum genome, suggesting that PEPC has a parasite-specific function. To investigate its importance in P. falciparum, we generated a pepc null mutant (D10Δpepc), which was only achievable when malate, a reduction product of oxaloacetate, was added to the growth medium. D10Δpepc had a severe growth defect in vitro, which was partially reversed by addition of malate or fumarate, suggesting that pepc may be essential in vivo. Targeted metabolomics using 13C-U-D-glucose and 13C-bicarbonate showed that the conversion of glycolytically-derived PEP into malate, fumarate, aspartate and citrate was abolished in D10Δpepc and that pentose phosphate pathway metabolites and glycerol 3-phosphate were present at increased levels. In contrast, metabolism of the carbon skeleton of 13C,15N-U-glutamine was similar in both parasite lines, although the flux was lower in D10Δpepc; it also confirmed the operation of a complete forward TCA cycle in the wild type parasite. Overall, these data confirm the CO2 fixing activity of PEPC and suggest that it provides metabolites essential for TCA cycle anaplerosis and the maintenance of cytosolic and mitochondrial redox balance. Moreover, these findings imply that PEPC may be an exploitable target for future drug discovery

    FAK acts as a suppressor of RTK-MAP kinase signalling in Drosophila melanogaster epithelia and human cancer cells

    Get PDF
    Receptor Tyrosine Kinases (RTKs) and Focal Adhesion Kinase (FAK) regulate multiple signalling pathways, including mitogen-activated protein (MAP) kinase pathway. FAK interacts with several RTKs but little is known about how FAK regulates their downstream signalling. Here we investigated how FAK regulates signalling resulting from the overexpression of the RTKs RET and EGFR. FAK suppressed RTKs signalling in Drosophila melanogaster epithelia by impairing MAPK pathway. This regulation was also observed in MDA-MB-231 human breast cancer cells, suggesting it is a conserved phenomenon in humans. Mechanistically, FAK reduced receptor recycling into the plasma membrane, which resulted in lower MAPK activation. Conversely, increasing the membrane pool of the receptor increased MAPK pathway signalling. FAK is widely considered as a therapeutic target in cancer biology; however, it also has tumour suppressor properties in some contexts. Therefore, the FAK-mediated negative regulation of RTK/MAPK signalling described here may have potential implications in the designing of therapy strategies for RTK-driven tumours

    Enhancing Specific Disruption of Intracellular Protein Complexes by Hydrocarbon Stapled Peptides Using Lipid Based Delivery

    Get PDF
    Linear peptides can mimic and disrupt protein-protein interactions involved in critical cell signaling pathways. Such peptides however are usually protease sensitive and unable to engage with intracellular targets due to lack of membrane permeability. Peptide stapling has been proposed to circumvent these limitations but recent data has suggested that this method does not universally solve the problem of cell entry and can lead to molecules with off target cell lytic properties. To address these issues a library of stapled peptides was synthesized and screened to identify compounds that bound Mdm2 and activated cellular p53. A lead peptide was identified that activated intracellular p53 with negligible nonspecific cytotoxicity, however it still bound serum avidly and only showed a marginal improvement in cellular potency. These hurdles were overcome by successfully identifying a pyridinium-based cationic lipid formulation, which significantly improved the activity of the stapled peptide in a p53 reporter cell line, principally through increased vesicular escape. These studies under score that stapled peptides, which are cell permeable and target specific, can be identified with rigorous experimental design and that these properties can be improved through use with lipid based formulations. This work should facilitate the clinical translation of stapled peptides

    Community Management of Endemic Scabies in Remote Aboriginal Communities of Northern Australia: Low Treatment Uptake and High Ongoing Acquisition

    Get PDF
    Like many impoverished areas around the world, Aboriginal communities in Australia experience an unacceptably high burden of scabies, skin infections, and secondary complications. Young children are most at risk. Our study investigated scabies in a remote setting with very high rates of skin disease, a high level of household overcrowding, and limited infrastructure for sanitation and preventive health measures. We assessed uptake of scabies treatment and scabies acquisition following provision of treatment by a community-based skin program. In a household where scabies was present, we found that treatment with topical permethrin cream of all close contacts can significantly reduce a susceptible individual's risk of infection. Our findings also demonstrate the challenges of achieving a high level of treatment participation, with limited permethrin use observed among household contacts. This suggests an urgent need for a more practical treatment option. International efforts to reduce childhood morbidity and mortality have demonstrated the efficacy of numerous child health interventions but have also highlighted the deficits in their delivery and implementation. Experiences like this, where the effectiveness of a coordinated local program delivering an efficacious intervention is hampered by poor treatment uptake and ongoing transmission, are an important and timely message for researchers, program managers, and policy-makers

    Reductions in External Divalent Cations Evoke Novel Voltage-Gated Currents in Sensory Neurons

    Get PDF
    It has long been recognized that divalent cations modulate cell excitability. Sensory nerve excitability is of critical importance to peripheral diseases associated with pain, sensory dysfunction and evoked reflexes. Thus we have studied the role these cations play on dissociated sensory nerve activity. Withdrawal of both Mg2+ and Ca2+ from external solutions activates over 90% of dissociated mouse sensory neurons. Imaging studies demonstrate a Na+ influx that then causes depolarization-mediated activation of voltage-gated Ca2+ channels (CaV), which allows Ca2+ influx upon divalent re-introduction. Inhibition of CaV (ω-conotoxin, nifedipine) or NaV (tetrodotoxin, lidocaine) fails to reduce the Na+ influx. The Ca2+ influx is inhibited by CaV inhibitors but not by TRPM7 inhibition (spermine) or store-operated channel inhibition (SKF96365). Withdrawal of either Mg2+ or Ca2+ alone fails to evoke cation influxes in vagal sensory neurons. In electrophysiological studies of dissociated mouse vagal sensory neurons, withdrawal of both Mg2+ and Ca2+ from external solutions evokes a large slowly-inactivating voltage-gated current (IDF) that cannot be accounted for by an increased negative surface potential. Withdrawal of Ca2+ alone fails to evoke IDF. Evidence suggests IDF is a non-selective cation current. The IDF is not reduced by inhibition of NaV (lidocaine, riluzole), CaV (cilnidipine, nifedipine), KV (tetraethylammonium, 4-aminopyridine) or TRPM7 channels (spermine). In summary, sensory neurons express a novel voltage-gated cation channel that is inhibited by external Ca2+ (IC50∼0.5 µM) or Mg2+ (IC50∼3 µM). Activation of this putative channel evokes substantial cation fluxes in sensory neurons

    Facile solution-phase synthesis of γ-Mn3O4 hierarchical structures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A lot of effort has been focused on the integration of nanorods/nanowire as building blocks into three-dimensional (3D) complex superstructures. But, the development of simple and effective methods for creating novel assemblies of self-supported patterns of hierarchical architectures to designed materials using a suitable chemical method is important to technology and remains an attractive, but elusive goal.</p> <p>Results</p> <p>The hierarchical structure of Mn<sub>3</sub>O<sub>4 </sub>with radiated spherulitic nanorods was prepared via a simple solution-based coordinated route in the presence of macrocycle polyamine, hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene (CT) with the assistance of thiourea as an additive.</p> <p>Conclusion</p> <p>This approach opens a new and facile route for the morphogenesis of Mn<sub>3</sub>O<sub>4 </sub>material and it might be extended as a novel synthetic method for the synthesis of other inorganic semiconducting nanomaterials such as metal chalcogenide semiconductors with novel morphology and complex form, since it has been shown that thiourea can be used as an effective additive and the number of such water-soluble macrocyclic polyamines also makes it possible to provide various kinds of ligands for different metals in homogeneous water system.</p

    The use of schools for malaria surveillance and programme evaluation in Africa

    Get PDF
    Effective malaria control requires information on both the geographical distribution of malaria risk and the effectiveness of malaria interventions. The current standard for estimating malaria infection and impact indicators are household cluster surveys, but their complexity and expense preclude frequent and decentralized monitoring. This paper reviews the historical experience and current rationale for the use of schools and school children as a complementary, inexpensive framework for planning, monitoring and evaluating malaria control in Africa. Consideration is given to (i) the selection of schools; (ii) diagnosis of infection in schools; (iii) the representativeness of schools as a proxy of the communities they serve; and (iv) the increasing need to evaluate interventions delivered through schools. Finally, areas requiring further investigation are highlighted

    Identification of a novel splice variant form of the influenza a virus m2 ion channel with an antigenically distinct ectodomain

    Get PDF
    Segment 7 of influenza A virus produces up to four mRNAs. Unspliced transcripts encode M1, spliced mRNA2 encodes the M2 ion channel, while protein products from spliced mRNAs 3 and 4 have not previously been identified. The M2 protein plays important roles in virus entry and assembly, and is a target for antiviral drugs and vaccination. Surprisingly, M2 is not essential for virus replication in a laboratory setting, although its loss attenuates the virus. To better understand how IAV might replicate without M2, we studied the reversion mechanism of an M2-null virus. Serial passage of a virus lacking the mRNA2 splice donor site identified a single nucleotide pseudoreverting mutation, which restored growth in cell culture and virulence in mice by upregulating mRNA4 synthesis rather than by reinstating mRNA2 production. We show that mRNA4 encodes a novel M2-related protein (designated M42) with an antigenically distinct ectodomain that can functionally replace M2 despite showing clear differences in intracellular localisation, being largely retained in the Golgi compartment. We also show that the expression of two distinct ion channel proteins is not unique to laboratory-adapted viruses but, most notably, was also a feature of the 1983 North American outbreak of H5N2 highly pathogenic avian influenza virus. In identifying a 14th influenza A polypeptide, our data reinforce the unexpectedly high coding capacity of the viral genome and have implications for virus evolution, as well as for understanding the role of M2 in the virus life cycle
    corecore