650 research outputs found

    Utilization of CT scanning associated with complex spine surgery.

    Get PDF
    BackgroundDue to the risk associated with exposure to ionizing radiation, there is an urgent need to identify areas of CT scanning overutilization. While increased use of diagnostic spinal imaging has been documented, no previous research has estimated the magnitude of follow-up imaging used to evaluate the postoperative spine.MethodsThis retrospective cohort study quantifies the association between spinal surgery and CT utilization. An insurance database (Humana, Inc.) with ≈ 19 million enrollees was employed, representing 8 consecutive years (2007-2014). Surgical and imaging procedures were captured by anatomic-specific CPT codes. Complex surgeries included all cervical, thoracic and lumbar instrumented spine fusions. Simple surgeries included discectomy and laminectomy. Imaging was restricted to CT and MRI. Postoperative imaging frequency extended to 5-years post-surgery.ResultsThere were 140,660 complex spinal procedures and 39,943 discectomies and 49,889 laminectomies. MRI was the predominate preoperative imaging modality for all surgical procedures (median: 80%; range: 73-82%). Postoperatively, CT prevalence following complex procedures increased more than two-fold from 6 months (18%) to 5 years (≥40%), and patients having a postoperative CT averaged two scans. For simple procedures, the prevalence of postoperative CT scanning never exceeded 30%.ConclusionsCT scanning is used frequently for follow-up imaging evaluation following complex spine surgery. There is emerging evidence of an increased cancer risk due to ionizing radiation exposure with CT. In the setting of complex spine surgery, actions to mitigate this risk should be considered and include reducing nonessential scans, using the lowest possible radiation dose protocols, exerting greater selectivity in monitoring the developing fusion construct, and adopting non-ferromagnetic implant biomaterials that facilitate MRI postoperatively

    An RxLR effector from phytophthora infestans prevents re-localisation of two plant NAC transcription factors from the endoplasmic reticulum to the nucleus

    Get PDF
    The plant immune system is activated following the perception of exposed, essential and invariant microbial molecules that are recognised as non-self. A major component of plant immunity is the transcriptional induction of genes involved in a wide array of defence responses. In turn, adapted pathogens deliver effector proteins that act either inside or outside plant cells to manipulate host processes, often through their direct action on plant protein targets. To date, few effectors have been shown to directly manipulate transcriptional regulators of plant defence. Moreover, little is known generally about the modes of action of effectors from filamentous (fungal and oomycete) plant pathogens. We describe an effector, called Pi03192, from the late blight pathogen Phytophthora infestans, which interacts with a pair of host transcription factors at the endoplasmic reticulum (ER) inside plant cells. We show that these transcription factors are released from the ER to enter the nucleus, following pathogen perception, and are important in restricting disease. Pi03192 prevents the plant transcription factors from accumulating in the host nucleus, revealing a novel means of enhancing host susceptibility

    How consistent are the transcriptome changes associated with cold acclimation in two species of the Drosophila virilis group?

    Get PDF
    This work was financially support by a Marie Curie Initial Training Network grant, “Understanding the evolutionary origin of biological diversity” (ITN-2008–213780 SPECIATION), grants from the Academy of Finland to A.H. (project 132619) and M.K. (projects 268214 and 272927), a grant from NERC, UK to M.G.R. (grant NE/J020818/1), and NERC, UK PhD studentship to D.J.P. (NE/I528634/1).For many organisms the ability to cold acclimate with the onset of seasonal cold has major implications for their fitness. In insects, where this ability is widespread, the physiological changes associated with increased cold tolerance have been well studied. Despite this, little work has been done to trace changes in gene expression during cold acclimation that lead to an increase in cold tolerance. We used an RNA-Seq approach to investigate this in two species of the Drosophila virilis group. We found that the majority of genes that are differentially expressed during cold acclimation differ between the two species. Despite this, the biological processes associated with the differentially expressed genes were broadly similar in the two species. These included: metabolism, cell membrane composition, and circadian rhythms, which are largely consistent with previous work on cold acclimation/cold tolerance. In addition, we also found evidence of the involvement of the rhodopsin pathway in cold acclimation, a pathway that has been recently linked to thermotaxis. Interestingly, we found no evidence of differential expression of stress genes implying that long-term cold acclimation and short-term stress response may have a different physiological basis.PostprintPeer reviewe

    Disparities in healthy food zoning, farmers’ market availability, and fruit and vegetable consumption among North Carolina residents

    Get PDF
    Background Context and purpose of the study. To examine (1) associations between county-level zoning to support farmers’ market placement and county-level farmers’ market availability, rural/urban designation, percent African American residents, and percent of residents living below poverty and (2) individual-level associations between zoning to support farmers’ markets; fruit and vegetable consumption and body mass index (BMI) among a random sample of residents of six North Carolina (NC) counties. Methods Zoning ordinances were scored to indicate supportiveness for healthy food outlets. Number of farmers’ markets (per capita) was obtained from the NC-Community Transformation Grant Project Fruit and Vegetable Outlet Inventory (2013). County-level census data on rural/urban status, percent African American, and percent poverty were obtained. For data on farmers’ market shopping, fruit and vegetable consumption, and BMI, trained interviewers conducted a random digit dial telephone survey of residents of six NC counties (3 urban and 3 rural). Pearson correlation coefficients and multilevel linear regression models were used to examine county-level and individual-level associations between zoning supportiveness, farmers’ market availability, and fruit and vegetable consumption and BMI. Results At the county-level, healthier food zoning was greater in more urban areas and areas with less poverty. At the individual-level, self-reported fruit and vegetable consumption was associated with healthier food zoning. Conclusions Disparities in zoning to promote healthy eating should be further examined, and future studies should assess whether amending zoning ordinances will lead to greater availability of healthy foods and changes in dietary behavior and health outcomes.ECU Open Access Publishing Support Fun

    Design agency:prototyping multi-agent systems in architecture

    Get PDF
    This paper presents research on the prototyping of multi-agent systems for architectural design. It proposes a design exploration methodology at the intersection of architecture, engineering, and computer science. The motivation of the work includes exploring bottom up generative methods coupled with optimizing performance criteria including for geometric complexity and objective functions for environmental, structural and fabrication parameters. The paper presents the development of a research framework and initial experiments to provide design solutions, which simultaneously satisfy complexly coupled and often contradicting objectives. The prototypical experiments and initial algorithms are described through a set of different design cases and agents within this framework; for the generation of façade panels for light control; for emergent design of shell structures; for actual construction of reciprocal frames; and for robotic fabrication. Initial results include multi-agent derived efficiencies for environmental and fabrication criteria and discussion of future steps for inclusion of human and structural factors

    Secular Evolution and the Formation of Pseudobulges in Disk Galaxies

    Full text link
    We review internal processes of secular evolution in galaxy disks, concentrating on the buildup of dense central features that look like classical, merger-built bulges but that were made slowly out of disk gas. We call these pseudobulges. As an existence proof, we review how bars rearrange disk gas into outer rings, inner rings, and gas dumped into the center. In simulations, this gas reaches high densities that plausibly feed star formation. In the observations, many SB and oval galaxies show central concentrations of gas and star formation. Star formation rates imply plausible pseudobulge growth times of a few billion years. If secular processes built dense central components that masquerade as bulges, can we distinguish them from merger-built bulges? Observations show that pseudobulges retain a memory of their disky origin. They have one or more characteristics of disks: (1) flatter shapes than those of classical bulges, (2) large ratios of ordered to random velocities indicative of disk dynamics, (3) small velocity dispersions, (4) spiral structure or nuclear bars in the bulge part of the light profile, (5) nearly exponential brightness profiles, and (6) starbursts. These structures occur preferentially in barred and oval galaxies in which secular evolution should be rapid. So the cleanest examples of pseudobulges are recognizable. Thus a large variety of observational and theoretical results contribute to a new picture of galaxy evolution that complements hierarchical clustering and merging.Comment: 92 pages, 21 figures in 30 Postscript files; to appear in Annual Review of Astronomy and Astrophysics, Vol. 42, 2004, in press; for a version with full resolution figures, see http://chandra.as.utexas.edu/~kormendy/ar3ss.htm

    Activation of DNA-PK by Ionizing Radiation Is Mediated by Protein Phosphatase 6

    Get PDF
    DNA-dependent protein kinase (DNA-PK) plays a critical role in DNA damage repair, especially in non-homologous end-joining repair of double-strand breaks such as those formed by ionizing radiation (IR) in the course of radiation therapy. Regulation of DNA-PK involves multisite phosphorylation but this is incompletely understood and little is known about protein phosphatases relative to DNA-PK. Mass spectrometry analysis revealed that DNA-PK interacts with the protein phosphatase-6 (PP6) SAPS subunit PP6R1. PP6 is a heterotrimeric enzyme that consists of a catalytic subunit, plus one of three PP6 SAPS regulatory subunits and one of three ankyrin repeat subunits. Endogenous PP6R1 co-immunoprecipitated DNA-PK, and IR enhanced the amount of complex and promoted its import into the nucleus. In addition, siRNA knockdown of either PP6R1 or PP6 significantly decreased IR activation of DNA-PK, suggesting that PP6 activates DNA-PK by association and dephosphorylation. Knockdown of other phosphatases PP5 or PP1γ1 and subunits PP6R3 or ARS-A did not reduce IR activation of DNA-PK, demonstrating specificity for PP6R1. Finally, siRNA knockdown of PP6R1 or PP6 but not other phosphatases increased the sensitivity of glioblastoma cells to radiation-induced cell death to a level similar to DNA-PK deficient cells. Our data demonstrate that PP6 associates with and activates DNA-PK in response to ionizing radiation. Therefore, the PP6/PP6R1 phosphatase is a potential molecular target for radiation sensitization by chemical inhibition
    corecore