17 research outputs found

    Soil-Transmitted Helminth Reinfection after Drug Treatment: A Systematic Review and Meta-Analysis

    Get PDF
    Infections with soil-transmitted helminths (the roundworm Ascaris lumbricoides, the whipworm Trichuris trichiura, and hookworm) affect over 1 billion people, particularly rural communities in the developing world. The global strategy to control soil-transmitted helminth infections is ‘preventive chemotherapy’, which means large-scale administration of anthelmintic drugs to at-risk populations. However, because reinfection occurs after treatment, ‘preventive chemotherapy’ must be repeated regularly. Our systematic review and meta-analysis found that at 3, 6, and 12 months after treatment, A. lumbricoides prevalence reached 26% (95% confidence interval (CI): 16–43%), 68% (95% CI: 60–76%) and 94% (95% CI: 88–100%) of pretreatment levels, respectively. For T. trichiura, respective reinfection prevalence at these time points were 36% (95% CI: 28–47%), 67% (95% CI: 42–100%), and 82% (95% CI: 62–100%); and for hookworm, 30% (95% CI: 26–34%), 55% (95% CI: 34–87%), and 57% (95% CI: 49–67%). Prevalence and intensity of reinfection were positively correlated with pretreatment infection status. Our results suggest a frequent anthelmintic drug administration to maximize the benefit of preventive chemotherapy. Moreover, an integrated control strategy, consisting of preventive chemotherapy combined with health education and environmental sanitation is needed to interrupt transmission of soil-transmitted helminths

    Micronutrient fortification of food and its impact on woman and child health: A systematic review

    Get PDF
    Background: Vitamins and minerals are essential for growth and metabolism. The World Health Organization estimates that more than 2 billion people are deficient in key vitamins and minerals. Groups most vulnerable to these micronutrient deficiencies are pregnant and lactating women and young children, given their increased demands. Food fortification is one of the strategies that has been used safely and effectively to prevent vitamin and mineral deficiencies.Methods: A comprehensive search was done to identify all available evidence for the impact of fortification interventions. Studies were included if food was fortified with a single, dual or multiple micronutrients and impact of fortification was analyzed on the health outcomes and relevant biochemical indicators of women and children. We performed a meta-analysis of outcomes using Review Manager Software version 5.1.Results: Our systematic review identified 201 studies that we reviewed for outcomes of relevance. Fortification for children showed significant impacts on increasing serum micronutrient concentrations. Hematologic markers also improved, including hemoglobin concentrations, which showed a significant rise when food was fortified with vitamin A, iron and multiple micronutrients. Fortification with zinc had no significant adverse impact on hemoglobin levels. Multiple micronutrient fortification showed non-significant impacts on height for age, weight for age and weight for height Z-scores, although they showed positive trends. The results for fortification in women showed that calcium and vitamin D fortification had significant impacts in the post-menopausal age group. Iron fortification led to a significant increase in serum ferritin and hemoglobin levels in women of reproductive age and pregnant women. Folate fortification significantly reduced the incidence of congenital abnormalities like neural tube defects without increasing the incidence of twinning. The number of studies pooled for zinc and multiple micronutrients for women were few, though the evidence suggested benefit. There was a dearth of evidence for the impact of fortification strategies on morbidity and mortality outcomes in women and children.Conclusion: Fortification is potentially an effective strategy but evidence from the developing world is scarce. Programs need to assess the direct impact of fortification on morbidity and mortality

    Temporal fluctuation of multidrug resistant salmonella typhi haplotypes in the mekong river delta region of Vietnam.

    No full text
    BACKGROUND: typhoid fever remains a public health problem in Vietnam, with a significant burden in the Mekong River delta region. Typhoid fever is caused by the bacterial pathogen Salmonella enterica serovar Typhi (S. Typhi), which is frequently multidrug resistant with reduced susceptibility to fluoroquinolone-based drugs, the first choice for the treatment of typhoid fever. We used a GoldenGate (Illumina) assay to type 1,500 single nucleotide polymorphisms (SNPs) and analyse the genetic variation of S. Typhi isolated from 267 typhoid fever patients in the Mekong delta region participating in a randomized trial conducted between 2004 and 2005. PRINCIPAL FINDINGS: the population of S. Typhi circulating during the study was highly clonal, with 91% of isolates belonging to a single clonal complex of the S. Typhi H58 haplogroup. The patterns of disease were consistent with the presence of an endemic haplotype H58-C and a localised outbreak of S. Typhi haplotype H58-E2 in 2004. H58-E2-associated typhoid fever cases exhibited evidence of significant geo-spatial clustering along the Sông H u branch of the Mekong River. Multidrug resistance was common in the established clone H58-C but not in the outbreak clone H58-E2, however all H58 S. Typhi were nalidixic acid resistant and carried a Ser83Phe amino acid substitution in the gyrA gene. SIGNIFICANCE: the H58 haplogroup dominates S. Typhi populations in other endemic areas, but the population described here was more homogeneous than previously examined populations, and the dominant clonal complex (H58-C, -E1, -E2) observed in this study has not been detected outside Vietnam. IncHI1 plasmid-bearing S. Typhi H58-C was endemic during the study period whilst H58-E2, which rarely carried the plasmid, was only transient, suggesting a selective advantage for the plasmid. These data add insight into the outbreak dynamics and local molecular epidemiology of S. Typhi in southern Vietnam

    Increase in mitotic recombination in diploid cells of Aspergillus nidulans in response to ethidium bromide

    No full text
    Ethidium bromide (EB) is an intercalating inhibitor of topoisomerase II and its activities are related to chemotherapeutic drugs used in anti-cancer treatments. EB promotes several genotoxic effects in exposed cells by stabilising the DNA-enzyme complex. The recombinagenic potential of EB was evaluated in our in vivo study by the loss of heterozygosity of nutritional markers in diploid Aspergillus nidulans cells through Homozygotization Index (HI). A DNA repair mutation, uvsZ and a chromosome duplication DP (II-I) were introduced in the genome of tested cells to obtain a sensitive system for the recombinagenesis detection. EB-treated diploid cells had HI values significantly greater than the control at both concentrations (4.0 x 10-3 and 5.0 x 10-3 mM). Results indicate that the intercalating agent is potentially capable of inducing mitotic crossing-over in diploid A. nidulans cells

    The Footprint of Genome Architecture in the Largest Genome Expansion in RNA Viruses

    Get PDF
    The small size of RNA virus genomes (2-to-32 kb) has been attributed to high mutation rates during replication, which is thought to lack proof-reading. This paradigm is being revisited owing to the discovery of a 3′-to-5′ exoribonuclease (ExoN) in nidoviruses, a monophyletic group of positive-stranded RNA viruses with a conserved genome architecture. ExoN, a homolog of canonical DNA proof-reading enzymes, is exclusively encoded by nidoviruses with genomes larger than 20 kb. All other known non-segmented RNA viruses have smaller genomes. Here we use evolutionary analyses to show that the two- to three-fold expansion of the nidovirus genome was accompanied by a large number of replacements in conserved proteins at a scale comparable to that in the Tree of Life. To unravel common evolutionary patterns in such genetically diverse viruses, we established the relation between genomic regions in nidoviruses in a sequence alignment-free manner. We exploited the conservation of the genome architecture to partition each genome into five non-overlapping regions: 5′ untranslated region (UTR), open reading frame (ORF) 1a, ORF1b, 3′ORFs (encompassing the 3′-proximal ORFs), and 3′ UTR. Each region was analyzed for its contribution to genome size change under different models. The non-linear model statistically outperformed the linear one and captured >92% of data variation. Accordingly, nidovirus genomes were concluded to have reached different points on an expansion trajectory dominated by consecutive increases of ORF1b, ORF1a, and 3′ORFs. Our findings indicate a unidirectional hierarchical relation between these genome regions, which are distinguished by their expression mechanism. In contrast, these regions cooperate bi-directionally on a functional level in the virus life cycle, in which they predominantly control genome replication, genome expression, and virus dissemination, respectively. Collectively, our findings suggest that genome architecture and the associated region-specific division of labor leave a footprint on genome expansion and may limit RNA genome size
    corecore